Sonic hedgehog signaling regulates reciprocal epithelial-mesenchymal interactions controlling palatal outgrowth

Author:

Lan Yu1,Jiang Rulang1

Affiliation:

1. Center for Oral Biology and Department of Biomedical Genetics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA.

Abstract

The mammalian secondary palate arises by outgrowth from the oral side of the paired maxillary processes flanking the primitive oral cavity. Palatal growth depends on reciprocal interactions between the oral ectoderm and the underlying neural-crest-derived mesenchyme. Previous studies have implicated sonic hedgehog (Shh) as an important epithelial signal for regulating palatal growth. However, the cellular and molecular mechanisms through which Shh regulates palatal development in vivo have not been directly analyzed, due in part to early embryonic lethality of mice lacking Shh or other essential components of the Shh signaling pathway. Using Cre/loxP-mediated tissue-specific inactivation of the smoothened (Smo) gene in the developing palatal mesenchyme, we show that the epithelially expressed Shh signals directly to the palatal mesenchyme to regulate palatal mesenchyme cell proliferation through maintenance of cyclin D1 (Ccnd1) and Ccnd2 expression. Moreover, we show that Shh-Smo signaling specifically regulates the expression of the transcription factors Foxf1a,Foxf2 and Osr2 in the developing palatal mesenchyme. Furthermore, we show that Shh signaling regulates Bmp2, Bmp4 and Fgf10 expression in the developing palatal mesenchyme and that specific inactivation of Smo in the palatal mesenchyme indirectly affects palatal epithelial cell proliferation. Together with previous reports that the mesenchymally expressed Fgf10 signals to the palatal epithelium to regulate ShhmRNA expression and cell proliferation, these data demonstrate that Shh signaling plays a central role in coordinating the reciprocal epithelial-mesenchymal interactions controlling palatal outgrowth.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3