PTEN deficiency causes dyschondroplasia in mice by enhanced hypoxia-inducible factor 1α signaling and endoplasmic reticulum stress

Author:

Yang Guan1,Sun Qiang1,Teng Yan1,Li Fangfei1,Weng Tujun1,Yang Xiao1

Affiliation:

1. State Key Laboratory of Proteomics, Genetic Laboratory of Development and Diseases, Institute of Biotechnology, 20 Dongdajie, Beijing 100071,China.

Abstract

Chondrocytes within the growth plates acclimatize themselves to a variety of stresses that might otherwise disturb cell fate. The tumor suppressor PTEN(phosphatase and tensin homolog deleted from chromosome 10) has been implicated in the maintenance of cell homeostasis. However, the functions of PTEN in regulating chondrocytic adaptation to stresses remain largely unknown. In this study, we have created chondrocyte-specific Pten knockout mice (Ptenco/co;Col2a1-Cre) using the Cre-loxP system. Following AKT activation, Pten mutant mice exhibited dyschondroplasia resembling human enchondroma. Cartilaginous nodules originated from Pten mutant resting chondrocytes that suffered from impaired proliferation and differentiation, and this was coupled with enhanced endoplasmic reticulum (ER) stress. We further found that ER stress in Pten mutant chondrocytes only occurred under hypoxic stress,characterized by an upregulation of unfolded protein response-related genes as well as an engorged and fragmented ER in which collagens were trapped. An upregulation of hypoxia-inducible factor 1α (HIF1α) and downstream targets followed by ER stress induction was also observed in Ptenmutant growth plates and in cultured chondrocytes, suggesting that PI3K/AKT signaling modulates chondrocytic adaptation to hypoxic stress via regulation of the HIF1α pathway. These data demonstrate that PTEN function in chondrocytes is essential for their adaptation to stresses and for the inhibition of dyschondroplasia.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

Cited by 51 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3