Electronic individual identification of zebrafish using radio frequency identification (RFID) microtags

Author:

Cousin Xavier12,Daouk Tarek1,Péan Samuel1,Lyphout Laura1,Schwartz Marie-Elise12,Bégout Marie-Laure1

Affiliation:

1. Ifremer, Place Gaby Coll, BP 7, 17137 L'Houmeau, France

2. INRA SCRIBE, Campus de Beaulieu, 35042 Rennes, France

Abstract

SUMMARY Although individual electronic tagging using passive integrated acoustic (PIT) tags is established, it is mainly for fish >60 mm in length and is unsuitable for fish of <30 mm, like zebrafish. We used radio frequency identification (RFID) microtags (1 mm in diameter and 6 mm in length, with a mass of ~10 mg) to individually identify juvenile zebrafish (length 16–42 mm, mass 138–776 mg) for the first time, and studied the effects of intracoelomic implantation on fish survival and microtag loss, growth, spawning and exploratory behaviour. After 5.5 months, both high survival (82%) and low microtag loss (11%) were achieved. The smallest surviving fish weighed 178 mg, and success in microtag reading was 73% for the size class 350–450 mg (26 mm). Greater success was achieved when fish were larger at the time of tagging but no negative effects on growth were observed for any size class and some tagged fish spawned. No significant differences in behavioural responses could be detected between tagged fish and untagged controls after 2 months. Overall, the results suggest that the tagging method is highly suitable for fish as small as zebrafish juveniles. We think this method will provide significant advances for researchers of the ever-growing fish model community and more generally for all small-fish users. Tagging is essential when one needs to identify fish (e.g. particular genotypes with no external cue), to run longitudinal monitoring of individual biological traits (e.g. growth) or to repeat assays with the same individual at discrete points in time (e.g. behaviour studies). Such a method will find applications in physiology, genetics, behaviour and (eco)toxicology fields.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Reference26 articles.

1. The effect of PIT tags on growth and physiology of age-0 cultured Eurasian perch Perca fluviatilis of variable size;Baras;Aquaculture,2000

2. Techniques for studying the behaviour of farmed fish;Bégout,2012

3. A test of two methods for marking larvae and postlarvae of the giant freshwater prawn, Macrobrachium rosenbergii;Brown;Aquacult. Res.,2003

4. Evidence to challenge the ‘2% Rule’ for biotelemetry;Brown;N. Am. J. Fish. Manage.,1999

5. Internal tags and markas. Internal extrinsic identification systems: overview of implanted wire tags, otolith marks, and parasites;Buckley;Am. Fish. Soc. Symp.,1990

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3