The Cockroach DCMD Neurone: I. Lateral Inhibition and the Effects of Light- and Dark-adaptation

Author:

EDWARDS DONALD H.1

Affiliation:

1. Department of Biology, Yale University, New Haven, Conn. 06520; Department of Biology, Georgia State University Atlanta, GA 30303

Abstract

1. The responses of the cockroach descending contralateral movement detector (DCMD) neurone to moving light stimuli were studied under both light- and dark-adapted conditions. 2. With light-adaptation the response of the DCMD to two moving 2° (diam.) spots of white light is less than the response to a single spot when the two spots are separated by less than 10° (Fig. 2). 3. With light-adaptation the response of the DCMD to a single moving light spot is a sigmoidally shaped function of the logarithm of the light intensity (Fig. 3a). With dark-adaptation the response of a DCMD to a single moving light spot is a bell-shaped function of the logarithm of the stimulus intensity (Fig. 3b). The absolute intensity that evokes a threshold response is about one-and-a-half log units less in the dark-adapted eye than in the light-adapted eye. 4. The decrease in the DCMD's response that occurs when two stimuli are closer than 10°, and when a single bright stimulus is made brighter, indicates that lateral inhibition operates among the afferents to the DCMD. 5. It is shown that this inhibition cannot be produced by a recurrent lateral inhibitory network. A model of the afferent path that contains a non-recurrent lateral inhibitory network can account for the response/intensity plots of the DCMD recorded under both light-adapted and dark-adapted conditions. 6. The threshold intensity of the DCMD is increased if a stationary pattern of light is present near the path of the moving spot stimulus. This is shown to be due to a peripheral tonic lateral inhibition that is distinct from the non-recurrent lateral inhibition described earlier. 7. It is suggested that the peripheral lateral inhibition acts to adjust the threshold of afferents to local background light levels, while the proximal non-recurrent network acts to enhance the acuity of the eye to small objects in the visual field, and to filter out whole-field stimuli.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3