Regulation of Blood Oxygen Affinity in the Australian Blackfish Gadopsis Marmoratus: I. Correlations between Oxygen-binding Properties, Habitat and Swimming Behaviour

Author:

DOBSON G. P.1,BALDWIN J.2

Affiliation:

1. Zoology Department, Monash University, Clayton, Victoria 3168, Australia; Department of Zoology, University of British Columbia, Vancouver, B.C., Canada V6T 1W5

2. Zoology Department, Monash University, Clayton, Victoria 3168, Australia

Abstract

1. The regulation of whole blood oxygen affinity in the freshwater blackfish Gadopsis marmoratus Richardson has been examined, and correlations made between oxygen-binding properties and the habitat and swimming behaviour of the fish. 2. Blackfish whole blood has a low oxygen affinity relative to other fish bloods reported in the literature. This is not due to a low oxygen affinity of the stripped haemoglobins, but arises from interactions between haemoglobin and intraerythrocytic modulators. 3. The presence of high concentrations of ATP, and to a lesser extent GTP, in the erythrocyte, together with the effect of these nucleoside triphosphates on the oxygen affinity of haemoglobin solutions at physiological NTP: Hb4 molar ratios, demonstrates that this class of compounds is a major regulator of oxygen affinity in blackfish blood. 4. The oxygen affinities of whole blood and haemoglobin solutions are sensitive to pH, with haemoglobin solutions displaying a relatively large alkaline Bohr coefficient of - 1.05 over the physiologically relevant pH range of 6.5–7.0. 5. Although increasing Pco2, lowers the oxygen affinity of whole blood, it does so only through the effect on pH, as pH-buffered haemoglobin solutions show no oxygen-linked CO2 binding. This lack of oxygen-linked CO2 binding has not been reported for any other naturally occurring vertebrate haemoglobins. 6. Muscle morphology and biochemistry, and behavioural observations, indicate that the blackfish uses anaerobic energy metabolism during rapid swimming and in recovery. 7. It is concluded that the oxygen-binding properties of blackfish blood reflect adaptations for maintaining adequate tissue oxygenation for animals at rest and during slow sustained swimming in waters of high oxygen tensions.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Bayesian network models for environmental flow decision-making: 1. Latrobe River Australia;River Research and Applications;2010-02-02

2. Habitat use and movement of river blackfish (Gadopsis marmoratusR.) in a highly modified Victorian stream, Australia;Ecology of Freshwater Fish;2004-12

3. Temperature effects on blood‐oxygen equilibria in relation to movements of the bat ray,Myliobatis Californicain tomales bay, California;Marine Behaviour and Physiology;1994-01

4. The Physiology of the Root Effect;Advances in Comparative and Environmental Physiology;1991

5. The root effect;Comparative Biochemistry and Physiology Part B: Comparative Biochemistry;1987-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3