Re-evaluating functional landscape of the cardiovascular system during development

Author:

Takada Norio12,Omae Madoka13,Sagawa Fumihiko12,Chi Neil C.4,Endo Satsuki12,Kozawa Satoshi12,Sato Thomas N.1256ORCID

Affiliation:

1. The Thomas N. Sato BioMEC-X Laboratories, Advanced Telecommunications Research Institute International (ATR), Kyoto, Japan

2. ERATO Sato Live Bio-Forecasting Project, Japan Science and Technology Agency (JST), Kyoto, Japan

3. Kyoto University, Graduate School of Biostudies, Kyoto, Japan

4. Division of Cardiovascular Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA, USA

5. Department of Biomedical Engineering, Cornell University, Ithaca, NY, USA

6. Centenary Institute, Sydney, Australia

Abstract

The cardiovascular system facilitates body-wide distribution of oxygen, a vital process for development and survival of virtually all vertebrates. However, zebrafish, a vertebrate model organism, appears to form organs and survive mid-larval periods without the functional cardiovascular system. Despite such dispensability, it is the first organ to develop. Such enigma prompted us to hypothesize yet other cardiovascular functions that are important for developmental and/or physiological processes. Hence, systematic cellular ablations and functional perturbations are performed on zebrafish cardiovascular system to gain comprehensive and body-wide understanding of such functions and to elucidate underlying mechanisms. This approach identifies a set of organ-specific genes, each implicated for important functions. The study also unveils distinct cardiovascular mechanisms, each differentially regulating their expressions in organ-specific and oxygen-independent manners. Such mechanisms are mediated by organ-vessel interactions, circulation-dependent signals, and circulation-independent beating-heart-derived signals. Hence, a comprehensive and body-wide functional landscape of the cardiovascular system reported herein may provide a clue as to why it is the first organ to develop. Furthermore, the dataset herein could serve as a resource for the study of organ development and function.

Funder

Japan Society for the Promotion of Science

Japan Science and Technology Agency

Publisher

The Company of Biologists

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3