Multimodal in situ datalogging quantifies inter-individual variation in thermal experience and persistent origin effects on gaping behavior among intertidal mussels (Mytilus californianus)

Author:

Miller Luke P.1,Dowd W. Wesley23

Affiliation:

1. San Jose State University, Department of Biological Sciences, 1 Washington Square, San Jose, CA 95192, USA

2. Loyola Marymount University, Department of Biology, 1 LMU Drive, Los Angeles, CA 90045, USA

3. Washington State University, School of Biological Sciences, PO Box 644236, Pullman, WA 99164, USA

Abstract

In complex habitats, environmental variation over small spatial scales can equal or exceed larger-scale gradients. This small-scale variation may allow motile organisms to mitigate stressful conditions by choosing benign microhabitats, whereas sessile organisms may rely on other behaviors to cope with environmental stresses in these variable environments. We developed a monitoring system to track body temperature, valve gaping behavior, and posture of individual mussels (Mytilus californianus) in field conditions in the rocky intertidal zone. Neighboring mussels’ body temperatures varied by up to 14°C during low tides. Valve gaping during low tide and postural adjustments, which could theoretically lower body temperature, were not commonly observed. Rather, gaping behavior followed a tidal rhythm at a warm, high intertidal site; this rhythm shifted to a circadian period at a low intertidal site and for mussels continuously submerged in a tidepool. However, individuals within a site varied considerably in time spent gaping when submerged. This behavioral variation could be attributed in part to persistent effects of mussels’ developmental environment. Mussels originating from a wave-protected, warm site gaped more widely, and they remained open for longer periods during high tide than mussels from a wave-exposed, cool site. Variation in behavior was modulated further by recent wave heights and body temperatures during the preceding low tide. These large ranges in body temperatures and durations of valve closure events – which coincide with anaerobic metabolism – support the conclusion that individuals experience “homogeneous” aggregations such as mussel beds in dramatically different fashion, ultimately contributing to physiological variation among neighbors.

Funder

National Science Foundation

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3