Regulation of transient receptor potential canonical channel 1 (TRPC1) by sphingosine 1-phosphate in C2C12 myoblasts and its relevance for a role of mechanotransduction in skeletal muscle differentiation

Author:

Formigli Lucia12,Sassoli Chiara12,Squecco Roberta32,Bini Francesca4,Martinesi Maria4,Chellini Flaminia1,Luciani Giorgia3,Sbrana Francesca5,Zecchi-Orlandini Sandra12,Francini Fabio32,Meacci Elisabetta42

Affiliation:

1. Department of Anatomy, Histology and Forensic Medicine, University of Florence, Florence, Italy

2. Interuniversity Institute of Miology (IIM), University of Florence, Florence, Italy

3. Department of Physiological Sciences, University of Florence, Florence, Italy

4. Department of Biochemical Sciences, University of Florence, Florence, Italy

5. C.S.D.C. Department of Physics, University of Florence, Florence, Italy

Abstract

Transient receptor potential canonical (TRPC) channels provide cation and Ca2+ entry pathways, which have important regulatory roles in many physio-pathological processes, including muscle dystrophy. However, the mechanisms of activation of these channels remain poorly understood. Using siRNA, we provide the first experimental evidence that TRPC channel 1 (TRPC1), besides acting as a store-operated channel, represents an essential component of stretch-activated channels in C2C12 skeletal myoblasts, as assayed by whole-cell patch-clamp and atomic force microscopic pulling. The channel's activity and stretch-induced Ca2+ influx were modulated by sphingosine 1-phosphate (S1P), a bioactive lipid involved in satellite cell biology and tissue regeneration. We also found that TRPC1 was functionally assembled in lipid rafts, as shown by the fact that cholesterol depletion resulted in the reduction of transmembrane ion current and conductance. Association between TRPC1 and lipid rafts was increased by formation of stress fibres, which was elicited by S1P and abolished by treatment with the actin-disrupting dihydrocytochalasin B, suggesting a role for cytoskeleton in TRPC1 membrane recruitment. Moreover, TRPC1 expression was significantly upregulated during myogenesis, especially in the presence of S1P, implicating a crucial role for TRPC1 in myoblast differentiation. Collectively, these findings may offer new tools for understanding the role of TRPC1 and sphingolipid signalling in skeletal muscle regeneration and provide new therapeutic approaches for skeletal muscle disorders.

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 104 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3