Brain oscillator(s) underlying rhythmic cerebral and buccal motor output in the mollusc, Pleurobranchaea californica
Author:
Davis W. J.,Kovac M. P.,Croll R. P.,Matera E. M.
Abstract
Tonic (d.c.) intracellular depolarization of the previously identified phasic paracerebral feeding command interneurones (PCps) in the brain of the carnivorous gastropod Pleurobranchaea causes oscillatory neural activity in the brain, both before and after transecting the cerebrobuccal connectives. Therefore, cycle-by-cycle ascending input from the buccal ganglion is not essential to cyclic brain activity. Instead the brain contains an independent neural oscillator(s), in addition to the oscillator(s) demonstrated previously in the buccal ganglion (Davis et al. 1973). Transection of the cerebrobuccal connectives immediately reduces the previously demonstrated (Kovac, Davis, Matera & Croll, 1983) long-latency polysynaptic excitation of the PCps by the polysynaptic excitors (PSEs) of the PCps. Therefore polysynaptic excitation of the PCps by the PSEs is mediated by an ascending neurone(s) from the buccal ganglion. The capacity of feeding command interneurones to induce neural oscillation in the isolated brain declines to near zero within 1 h after transection of the cerebrobuccal connectives, suggesting that this capacity is normally maintained by ascending information from the buccal ganglion. The results show that this motor system conforms to a widely applicable general model of the neural control of rhythmic behaviour, by which independent neural oscillators distributed widely in the central nervous system are coupled together to produce coordinated movement.
Publisher
The Company of Biologists
Subject
Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献