Interactions between detoxification mechanisms and excretion in Malpighian tubules ofDrosophila melanogaster

Author:

Chahine Sarah1,O'Donnell Michael J.1

Affiliation:

1. Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada

Abstract

SUMMARYInsects have long been known to excrete toxins via the Malpighian (renal) tubules. In addition, exposure to natural or synthetic toxins is commonly associated with increases in the activity of detoxification enzymes such as the P450 monoxygenases (P450s) and the glutathione-S-transferases (GSTs). We examined the links between mechanisms for detoxification and excretion in adult Drosophila melanogaster using functional assays and measurements of changes in gene expression by quantitative reverse transcriptase PCR in response to dietary exposure to compounds known to alter activity or gene expression of P450s and GSTs. Dietary exposure to phenol, which alters gene expression for multiple GSTs after seven to 10 generations, was also associated with an increase (more than twofold) in secretion of the organic anion methotrexate (MTX) by isolated tubules. Dietary exposure to the insecticide synergist piperonyl butoxide (PBO) was associated with reduced expression of two P450 genes (Cyp4e2, Cyp4p1) and two GST genes (GstD1, GstD5) in the tubules, as well as increased expression of Cyp12d1 and GstE1. Thin layer chromatographic analysis of fluid secreted by isolated tubules indicated that dietary exposure to PBO resulted in increased levels of an MTX metabolite. In addition, exposure to PBO altered the expression of transporter genes in the tubules, including a Drosophila multidrug resistance-associated protein, and was associated with a 73% increase in MTX secretion by isolated tubules. The results suggest that exposure of Drosophila to toxins evokes a coordinated response by the Malpighian tubules, involving both alterations in detoxification pathways as well as enhanced transport.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Reference35 articles.

1. A role for P-glycoprotein in environmental toxicology;Abu-Qare;J. Toxicol. Environ. Health B Crit. Rev.,2003

2. Multixenobiotic resistance as a cellular defense mechanism in aquatic organisms;Bard;Aquat. Toxicol.,2000

3. Effects of dietary or injected organic cations on larval Drosophila melanogaster: Mortality and elimination of tetraethylammonium from the hemolymph;Bijelic;Arch. Insect Biochem. Physiol.,2005

4. Physiological and molecular characterization of methotrexate transport by Malpighian tubules of adult Drosophila melanogaster;Chahine;J. Insect Physiol.,2009

5. Effects of acute or chronic exposure to dietary organic anions on secretion of methotrexate and salicylate by Malpighian tubules of Drosophila melanogaster larvae;Chahine;Arch. Insect Biochem. Physiol.,2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3