Acute restraint stress rapidly impacts reproductive neuroendocrinology and downstream gonad function in big brown bats (Eptesicus fuscus)

Author:

Alonge Mattina M.1ORCID,Greville Lucas J. S.23ORCID,Ma Xuehao14,Faure Paul A.2ORCID,Bentley George E.14

Affiliation:

1. University of California, Berkeley 1 , Department of Integrative Biology, Berkeley, CA 94720-3200 , USA

2. McMaster University 3 , Department of Psychology, Neuroscience & Behaviour, Hamilton, ON , Canada , L8S 4L8

3. University of Waterloo 4 , Department of Biology, Waterloo, ON , Canada , N2L 3G1

4. Helen Wills Neuroscience Institute 2 , Berkeley, CA 94720 , USA

Abstract

ABSTRACTAnimals face unpredictable challenges that require rapid, facultative physiological reactions to support survival but may compromise reproduction. Bats have a long-standing reputation for being highly sensitive to stressors, with sensitivity and resilience varying both within and among species, yet little is known about how stress affects the signaling that regulates reproductive physiology. Here, we provide the first description of the molecular response of the hypothalamic–pituitary–gonadal (HPG) axis of male big brown bats (Eptesicus fuscus) in response to short-term stress using a standardized restraint manipulation. This acute stressor was sufficient to upregulate plasma corticosterone and resulted in a rapid decrease in circulating testosterone. While we did not find differences in the mRNA expression of key steroidogenic enzymes (StAR, aromatase, 5-alpha reductase), seminiferous tubule diameter was reduced in stressed bats coupled with a 5-fold increase in glucocorticoid receptor (GR) mRNA expression in the testes. These changes, in part, may be mediated by RFamide-related peptide (RFRP) because fewer immunoreactive cell bodies were detected in the brains of stressed bats compared with controls – suggesting a possible increase in secretion – and increased RFRP expression locally in the gonads. The rapid sensitivity of the bat testes to stress may be connected to deleterious impacts on tissue health and function as supported by significant transcriptional upregulation of key pro-apoptotic signaling molecules (Bax, cytochrome c). Experiments like this broadly contribute to our understanding of the stronger ecological predictions regarding physiological responses of bats within the context of stress, which may impact decisions surrounding animal handling and conservation approaches.

Funder

Natural Sciences and Engineering Research Council of Canada

Mitacs

University of California Berkeley

National Science Foundation

Department of Integrative Biology, University of California Berkeley

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. ECR Spotlight – Lucas Greville and Mattina Alonge;Journal of Experimental Biology;2023-10-01

2. Risk of stress is extreme for big brown bats during breeding season;Journal of Experimental Biology;2023-10-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3