Response of epithelial cell and tissue shape to external forces in vivo

Author:

Balaji Ramya12,Weichselberger Vanessa123,Classen Anne-Kathrin12ORCID

Affiliation:

1. Albert-Ludwigs-University Freiburg, Center for Biological Systems Analysis, Habsburgerstr. 49, 79104 Freiburg, Germany

2. Ludwig-Maximilians-University Munich, Faculty of Biology, Grosshaderner Str. 2-4, 82152 Planegg-Martinsried, Germany

3. Spemann Graduate School of Biology and Medicine (SGBM), Albert-Ludwigs-University Freiburg, Germany

Abstract

How actomyosin generates forces at epithelial adherens junctions has been extensively studied. However, less is known about how a balance between internal and external forces establishes epithelial cell, tissue and organ shape. We use the Drosophila egg chamber to investigate how contractility at adherens junction in the follicle epithelium is modulated to accommodate and resist forces arising from the growing germline. We find that between stages 6 and 9 adherens junction tension in the post-mitotic epithelium decreases, suggesting that the junctional network relaxes to accommodate germline growth. At that time, a prominent medial Myosin II network coupled to corrugating adherens junctions develops. Local enrichment of medial Myosin II in main body follicle cells resists germline-derived forces, thus constraining apical areas and consequently cuboidal cell shapes at stage 9. At the tissue and organ level, local reinforcement of medial-junctional architecture ensures the timely contact of main body cells with the expanding oocyte and imposes circumferential constraints on the germline guiding egg elongation. Our study provides insight into how adherens junction tension promotes cell and tissue shape transitions while integrating growth and shape of an internally enclosed structure in vivo.

Funder

Deutsche Forschungsgemeinschaft

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3