Dimorphic cocoons of the robin moth, Hyalophora cecropia, reflect the existence of two distinct architectural syndromes

Author:

Parlin Adam F.1,Guerra Patrick A.1ORCID

Affiliation:

1. Department of Biological Sciences, University of Cincinnati, Rieveschl Hall, 318 College Drive, Cincinnati, OH 45221, USA

Abstract

ABSTRACT The architectural design of animal structures forms part of an individual's extended phenotype that can be subjected to strong selection pressures. We examined cocoon architectural dimorphism in robin moths (Hyalophora cecropia), which construct multilayered silk-woven cocoons that possess either a ‘baggy’ or ‘compact’ morphology. These dimorphic cocoons reflect extended phenotypes that can enable survival during a critical developmental period (pupal stage to adult emergence), with cocoons occurring either sympatrically or as monomorphic groups across different climatic regions in North America. We hypothesized that cocoon dimorphism is related to the cocoon's role as a mediating barrier for moisture. We predicted that the macro- and micro-architectural differences between the cocoon morphs would be consistent with this function. We compared the cocoon morphs in terms of their orientation when spun under natural field conditions, examined how these orientations affected cocoon water absorption under simulated rain trials, and performed material surface tests to compare the hydrophobicity of cocoons. We found that compact cocoons had traits that increased water resistance, as they had significantly greater hydrophobicity than baggy cocoons, because they absorbed less water and released water vapor faster. In contrast, the increased water absorptiveness of baggy cocoons can allow for greater moisture retention, a function related to the prevention of desiccation. Our study suggests that cocoon dimorphism in robin moths reflects distinct architectural syndromes, in which cocoons are spun to optimize either water resistance or retention. These different functions are consistent with strategies that act to respond to uncertain external environmental conditions that an individual might encounter during development.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Reference41 articles.

1. Freeze-protection of overwintering monarch butterflies in Mexico: critical role of the forest as a blanket and an umbrella;Anderson;Ecol. Entomol.,1996

2. Evolutionary models of extended phenotypes;Bailey;Trends Ecol. Evol.,2012

3. A portable rainfall simulator for field assessment of splash and slopewash in remote locations;Clarke;Earth Surf. Process. Landf.,2007

4. Cocoons: reflections on their unappreciated natural history;Collins;News Lepid Soc.,2011

5. Modification of adverse conditions by insects;Danks;Oikos,2002

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Robin moths hedge bets with choice of cocoon;Journal of Experimental Biology;2021-05-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3