Notch-Delta signaling induces a transition from mitotic cell cycle to endocycle inDrosophilafollicle cells

Author:

Deng Wu-Min,Althauser Cassandra,Ruohola-Baker Hannele1

Affiliation:

1. Department of Biochemistry, University of Washington, J591, HSB, Seattle, WA 98195-7350, USA

Abstract

In many developmental processes, polyploid cells are generated by a variation of the normal cell cycle called the endocycle in which cells increase their genomic content without dividing. How the transition from the normal mitotic cycle to endocycle is regulated is poorly understood. We show that the transition from mitotic cycle to endocycle in the Drosophila follicle cell epithelium is regulated by the Notch pathway. Loss of Notch function in follicle cells or its ligand Delta function in the underlying germline disrupts the normal transition of the follicle cells from mitotic cycle to endocycle, mitotic cycling continues, leading to overproliferation of these cells. The regulation is at the transcriptional level, as Su(H), a downstream transcription factor in the pathway, is also required cell autonomously in follicle cells for proper transitioning to the endocycle. One target of Notch and Su(H) is likely to be the G2/M cell cycle regulator String, a phosphatase that activates Cdc2 by dephosphorylation. String is normally repressed in the follicle cells just before the endocycle transition, but is expressed when Notch is inactivated. Analysis of the activity of String enhancer elements in follicle cells reveals the presence of an element that promotes expression of String until just before the onset of polyploidy in wild-type follicle cells but well beyond this stage in Notch mutant follicle cells. This suggests that it may be the target of the endocycle promoting activity of the Notch pathway. A second element that is insensitive to Notch regulation promotes String expression earlier in follicle cell development, which explains why Notch, while active at both stages, represses String only at the mitotic cycle-endocycle transition.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3