Wnt8 is required in lateral mesendodermal precursors for neural posteriorization in vivo

Author:

Erter Caroline E.1,Wilm Thomas P.2,Basler Nathan2,Wright Christopher V. E.1,Solnica-Krezel Lilianna2

Affiliation:

1. Department of Cell Biology, Vanderbilt University School of Medicine, 1161 21st Avenue South, Nashville, TN 37232-2175, USA

2. Department of Biological Sciences, Vanderbilt University, VU Station B 351634, Nashville, TN 37235, USA

Abstract

The dorsal ectoderm of the vertebrate gastrula was proposed by Nieuwkoop to be specified towards an anterior neural fate by an activation signal, with its subsequent regionalization along the anteroposterior (AP) axis regulated by a graded transforming activity, leading to a properly patterned forebrain, midbrain, hindbrain and spinal cord. The activation phase involves inhibition of BMP signals by dorsal antagonists, but the later caudalization process is much more poorly characterized. Explant and overexpression studies in chick, Xenopus, mouse and zebrafish implicate lateral/paraxial mesoderm in supplying the transforming influence, which is largely speculated to be a Wnt family member. We have analyzed the requirement for the specific ventrolaterally expressed Wnt8 ligand in the posteriorization of neural tissue in zebrafish wild-type and Nodal-deficient embryos (Antivin overexpressing or cyclops;squint double mutants), which show extensive AP brain patterning in the absence of dorsal mesoderm. In different genetic situations that vary the extent of mesodermal precursor formation, the presence of lateral wnt8-expressing cells correlates with the establishment of AP brain pattern. Cell tracing experiments show that the neuroectoderm of Nodal-deficient embryos undergoes a rapid anterior-to-posterior transformation in vivo during a short period at the end of the gastrula stage. Moreover, in both wild-type and Nodal-deficient embryos, inactivation of Wnt8 function by morpholino (MOwnt8) translational interference dose-dependently abrogates formation of spinal cord and posterior brain fates, without blocking ventrolateral mesoderm formation. MOwnt8 also suppresses the forebrain deficiency in bozozok mutants, in which inactivation of a homeobox gene causes ectopic wnt8 expression. In addition, the bozozok forebrain reduction is suppressed in bozozok;squint;cyclops triple mutants, and is associated with reduced wnt8 expression, as seen in cyclops;squint mutants. Hence, whereas boz and Nodal signaling largely cooperate in gastrula organizer formation, they have opposing roles in regulating wnt8 expression and forebrain specification. Our findings provide strong support for a model of neural transformation in which a planar gastrula-stage Wnt8 signal, promoted by Nodal signaling and dorsally limited by Bozozok, acts on anterior neuroectoderm from the lateral mesoderm to produce the AP regional patterning of the CNS.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

Reference83 articles.

1. Amaya, E., Musci, T. J. and Kirschner, M. W. (1991). Expression of a dominant negative mutant of the FGF receptor disrupts mesoderm formation in Xenopus embryos. Cell66, 257-270.

2. Ang, S. L. and Rossant, J. (1993). Anterior mesendoderm induces mouse Engrailed genes in explant cultures. Development118, 139-149.

3. Ang, S. L., Conlon, R. A., Jin, O. and Rossant, J. (1994). Positive and negative signals from mesoderm regulate the expression of mouse Otx2 in ectoderm explants. Development120, 2979-2989.

4. Baker, J. C., Beddington, R. S. and Harland, R. M. (1999). Wnt signaling in xenopus embryos inhibits bmp4 expression and activates neural development. Genes Dev.13, 3149-3159.

5. Bang, A. G., Papalopulu, N., Kintner, C. and Goulding, M. D. (1997). Expression of Pax-3 is initiated in the early neural plate by posteriorizing signals produced by the organizer and by posterior non-axial mesoderm. Development124, 2075-2085.

Cited by 105 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3