TGF-β modulates programmed cell death in the retina of the developing chick embryo

Author:

Dünker Nicole1,Schuster Norbert1,Krieglstein Kerstin1

Affiliation:

1. These authors contributed equally to this work

Abstract

Programmed cell death (PCD) is a key phenomenon in the regulation of cell number in multicellular organisms. We have shown that reduction of endogenous transforming growth factor β (TGF-β) prevents apoptotic PCD of neurons in the developing peripheral and central nervous system, suggesting that TGF-β is an important mediator of ontogenetic neuron death. Previous studies suggested that there are other pro-apoptotic molecules, nerve growth factor (NGF) and brain-derived neurotrophic factor, that induce cell death in the nervous system. In the developing chick retina, NGF induces PCD by activation of the p75 receptor. We have studied the role of TGF-β and its putative interdependence with NGF-mediated PCD in the chick retina. We found that TGF-β is present in the developing chick retina during the period of PCD and is essentially required to regulate PCD of retinal cells. TGF-β2, TGF-β3 and the ligand-binding TGF-β receptor can be detected immunocytochemically in the central retina, a region where apoptosis is most prominent during the early period of PCD. Application of a TGF-β-neutralizing antibody to chick embryos in ovo resulted in a decrease in the number of TUNEL-positive cells and a reduction of free nucleosome levels. In terms of magnitude, reduction of PCD caused by the neutralization of endogenous TGF-β was equivalent to that seen after anti-NGF application. Neutralization of both factors did not result in a further decrease in apoptosis, indicating that NGF and TGF-β may act on the same cell population. Furthermore, neutralization of TGF-β did not affect the expression of NGF or the p75-receptor. Our results suggest that TGF-β and NGF are both required to regulate cell death in the chick retina in vivo.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

Reference62 articles.

1. Ashley, D. M., Kong, F. M., Bigner, D. D. and Hale, L. P. (1998). Endogenous expression of transforming growth factor beta1 inhibits growth and tumorigenicity and enhances Fas-mediated apoptosis in a murine high-grade glioma model. Cancer Res.58, 302-309.

2. Barker, P. A. (1998). p75NTR: a study in contrasts. Cell Death Differ.5, 346-356.

3. Böttner, M., Krieglstein, K. and Unsicker, K. (2000). The TGF--βs: structure, signaling and roles in nervous system development and functions. J. Neurochem.75, 2227-2240.

4. Casaccia-Bonnefil, P., Gu, C. and Chao, M. V. (1999). Neurotrophins in cell survival/death decisions. Adv. Exp. Med. Biol.468, 275-282.

5. Cecconi, F., Alvarez-Bolado, G., Meyer, B.I., Roth, K. A. and Gruss, P. (1998). Apaf1 (CED-4 homolog) regulates programmed cell death in mammalian development. Cell94, 727-737.

Cited by 49 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3