FGF signals are involved in the differentiation of notochord cells and mesenchyme cells of the ascidianHalocynthia roretzi

Author:

Shimauchi Yoshie12,Murakami Seiko D.2,Satoh Nori1

Affiliation:

1. Present address: Department of Biological Science, Graduate School of Science, Osaka University, Toyonaka 560-0043, Japan

2. The first two authors contributed equally to this work

Abstract

Differentiation of notochord cells and mesenchyme cells of the ascidian Halocynthia roretzi requires interactions with neighboring endodermal cells and previous experiments suggest that these interactions require fibroblast growth factor (FGF). In the present study, we examined the role of FGF in these interactions by disrupting signaling using the dominant negative form of the FGF receptor. An FGF receptor gene of H. roretzi (HrFGFR) is expressed both maternally and zygotically. The maternally expressed transcript was ubiquitously distributed in fertilized eggs and in early embryos. Zygotic expression became evident by the neurula stage and transcripts were detected in epidermal cells of the posterior half of embryos. Synthetic mRNA for the dominant negative form of FGFR, in which the intracellular tyrosine kinase domain was deleted, was injected into fertilized eggs to interfere with the possible function of HrFGFR. Injected eggs cleaved and gastrulated the same as the control embryos. Analyses of the expression of differentiation markers in the experimental embryos indicated that the differentiation of epidermal cells, muscle cells and endodermal cells was not affected significantly. However, manipulated embryos showed downregulation of notochord-specific Brachyury expression and failure of notochord cell differentiation, resulting in the development of tailbud embryos with shorted tails. The expression of an actin gene that is normally expressed in mesenchyme cells was also suppressed. These results suggest that FGF signals are involved in differentiation of notochord cells and mesenchyme cells in Halocynthia embryos. Furthermore, the patterning of a neuron-specific tubulin gene expression was disturbed, suggesting that the formation of the nervous system was directly affected by disrupting FGF signals or indirectly affected due to the disruption of normal notochord formation.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3