XenopusDishevelled signaling regulates both neural and mesodermal convergent extension: parallel forces elongating the body axis

Author:

Wallingford John B.,Harland Richard M.1

Affiliation:

1. Department of Molecular and Cell Biology, 401 Barker Hall, University of California, Berkeley, CA 94720, USA

Abstract

During amphibian development, non-canonical Wnt signals regulate the polarity of intercalating dorsal mesoderm cells during convergent extension. Cells of the overlying posterior neural ectoderm engage in similar morphogenetic cell movements. Important differences have been discerned in the cell behaviors associated with neural and mesodermal cell intercalation, raising the possibility that different mechanisms may control intercalations in these two tissues. In this report, targeted expression of mutants of Xenopus Dishevelled (Xdsh) to neural or mesodermal tissues elicited different defects that were consistent with inhibition of either neural or mesodermal convergent extension. Expression of mutant Xdsh also inhibited elongation of neural tissues in vitro in Keller sandwich explants and in vivo in neural plate grafts. Targeted expression of other Wnt signaling antagonists also inhibited neural convergent extension in whole embryos. In situ hybridization indicated that these defects were not due to changes in cell fate. Examination of embryonic phenotypes after inhibition of convergent extension in different tissues reveals a primary role for mesodermal convergent extension in axial elongation, and a role for neural convergent extension as an equalizing force to produce a straight axis. This study demonstrates that non-canonical Wnt signaling is a common mechanism controlling convergent extension in two very different tissues in the Xenopus embryo and may reflect a general conservation of control mechanisms in vertebrate convergent extension.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

Reference57 articles.

1. Baker, J. C., Beddington, R. S. and Harland, R. M. (1999). Wnt signaling in Xenopus embryos inhibits bmp4 expression and activates neural development. Genes Dev.13, 3149-3159.

2. Bolce, M. E., Hemmati-Brivanlou, A., Kushner, P. D. and Harland, R. M. (1992). Ventral ectoderm of Xenopus forms neural tissue, including hindbrain, in response to activin. Development115, 681-688.

3. Boutros, M. and Mlodzik, M. (1999). Dishevelled: at the crossroads of divergent intracellular signaling pathways. Mech. Dev.83, 27-37.

4. Bradley, L. C., Snape, A., Bhatt, S. and Wilkinson, D. G. (1993). The structure and expression of the Xenopus Krox-20 gene: conserved and divergent patterns of expression in rhombomeres and neural crest. Mech. Dev.40, 73-84.

5. Brook, F. A., Shum, A. S., Van Straaten, H. W. and Copp, A. J. (1991). Curvature of the caudal region is responsible for failure of neural tube closure in the curly tail (ct) mouse embryo. Development113, 671-678.

Cited by 108 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3