Local retinoid signaling coordinates forebrain and facial morphogenesis by maintaining FGF8 and SHH

Author:

Schneider Richard A.1,Hu Diane1,Rubenstein John L. R.2,Maden Malcolm3,Helms Jill A.1

Affiliation:

1. Department of Orthopaedic Surgery, 533 Parnassus Avenue, Suite U-453, University of California at San Francisco, San Francisco, CA 94143-0514, USA

2. Department of Psychiatry, Nina Ireland Lab of Developmental Neurobiology, University of California at San Francisco, San Francisco, CA 94143, USA

3. MRC Centre for Developmental Neurobiology, King’s College London, Guy’s Campus, London Bridge, London SE1 9RT, UK

Abstract

Correlations between facial anomalies and brain defects are well characterized throughout the clinical literature, yet a developmental basis for this association has not been identified. We demonstrate that the frontonasal process, which gives rise to the mid- and upper face, and the forebrain are linked early in their morphogenesis by a local retinoid signaling event that maintains the expression of key regulatory molecules. First, we show that aldehyde dehydrogenase 6, which synthesizes the ligand, retinoic acid, is localized to the ventral epithelium of the presumptive frontonasal process of chick embryos. At least two retinoid receptors are expressed in adjacent populations of mesenchyme. Second, using synthetic pan-specific retinoid antagonists, we transiently inhibit the ability of retinoid receptors to bind retinoic acid in the rostral head and we generate embryos with a hypoplastic forebrain, fused eyes, and no frontonasal process-derived structures such as the upper beak. These defects are not due to eliminating mesenchymal progenitors, as neural crest cells still migrate into the frontonasal process, despite disruptions to retinoid signaling. Rather, these malformations result from loss of fibroblast growth factor 8 and sonic hedgehog expression, which leads to increased programmed cell death and decreased proliferation in the forebrain and frontonasal process. Most significantly, we can rescue the morphological defects by re-introducing retinoic acid, or fibroblast growth factor and sonic hedgehog proteins into antagonist-treated embryos. We propose that the local source of retinoic acid in the rostral head initiates a regulatory cascade that coordinates forebrain and frontonasal process morphogenesis.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3