New B-type cyclin synthesis is required between meiosis I and II duringXenopusoocyte maturation

Author:

Hochegger Helfrid1,Klotzbücher Andrea2,Kirk Jane1,Howell Mike1,le Guellec Katherine3,Fletcher Kate1,Duncan Tod1,Sohail Muhammad4,Hunt Tim1

Affiliation:

1. ICRF Clare Hall Laboratories, South Mimms, Hertfordshire EN6 3LD, UK

2. Institut für Molekulare Medizin, Klinik für Tumorbiologie, Universität Freiburg, Breisacher Strasse 117, 79121 Freiburg, Germany

3. Unité de Biologie et Genetique du Development, CNRS UPR 41, Université Rennes I, Avenue du General Leclerc, 35042 Rennes, France

4. Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK

Abstract

Progression through meiosis requires two waves of maturation promoting factor (MPF) activity corresponding to meiosis I and meiosis II. Frog oocytes contain a pool of inactive ‘pre-MPF’ consisting of cyclin-dependent kinase 1 bound to B-type cyclins, of which we now find three previously unsuspected members, cyclins B3, B4 and B5. Protein synthesis is required to activate pre-MPF, and we show here that this does not require new B-type cyclin synthesis, probably because of a large maternal stockpile of cyclins B2 and B5. This stockpile is degraded after meiosis I and consequently, the activation of MPF for meiosis II requires new cyclin synthesis, principally of cyclins B1 and B4, whose translation is strongly activated after meiosis I. If this wave of new cyclin synthesis is ablated by antisense oligonucleotides, the oocytes degenerate and fail to form a second meiotic spindle. The effects on meiotic progression are even more severe when all new protein synthesis is blocked by cycloheximide added after meiosis I, but can be rescued by injection of indestructible B-type cyclins. B-type cyclins and MPF activity are required to maintain c-mos and MAP kinase activity during meiosis II, and to establish the metaphase arrest at the end of meiotic maturation. We discuss the interdependence of c-mos and MPF, and reveal an important role for translational control of cyclin synthesis between the two meiotic divisions.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3