Isolation and characterization of a downstream target of Pax6 in the mammalian retinal primordium
Author:
Bernier Gilbert1, Vukovich Wolfgang1, Neidhardt Lorenz2, Herrmann Bernhard G.2, Gruss Peter1
Affiliation:
1. Max Planck Institute of Biophysical Chemistry, Department of Molecular Cell Biology, Am Fassberg 11, 37077 Göttingen, Germany 2. Max Planck Institute of Immunology, Stübeweg 51, D-79108, Freiburg, Germany
Abstract
The transcription factor Pax6 is required for eye morphogenesis in humans, mice and insects, and can induce ectopic eye formation in vertebrate and invertebrate organisms. Although the role of Pax6 has intensively been studied, only a limited number of genes have been identified that depend on Pax6 activity for their expression in the mammalian visual system. Using a large-scale in situ hybridization screen approach, we have identified a novel gene expressed in the mouse optic vesicle. This gene, Necab, encodes a putative cytoplasmic Ca2+-binding protein and coincides with Pax6 expression pattern in the neural ectoderm of the optic vesicle and in the forebrain pretectum. Remarkably, Necab expression is absent in both structures in Pax6 mutant embryos. By contrast, the optic vesicle-expressed homeobox genes Rx, Six3, Otx2 and Lhx2 do not exhibit an altered expression pattern. Using gain-of-function experiments, we show that Pax6 can induce ectopic expression of Necab, suggesting that Necab is a direct or indirect transcriptional target of Pax6. In addition, we have found that Necab misexpression can induce ectopic expression of the homeobox gene Chx10, a transcription factor implicated in retina development. Taken together, our results provide evidence that Necab is genetically downstream of Pax6 and that it is a part of a signal transduction pathway in retina development.
Publisher
The Company of Biologists
Subject
Developmental Biology,Molecular Biology
Reference36 articles.
1. Acampora, D., Mazan, S.,
Lallemand, Y., Avantaggiato, V., Maury, M., Simeone, A. and Brûlet, P. (1995). Forebrain and midbrain regions are deleted in Otx2-/- mutants due to a defective neuroectoderm specification during gastrulation. Development121, 3279-3290. 2. Ashery-Padan, R., Marquardt, T., Zhou, X. and Gruss, P. (2000). Pax6 activity in the lens primordium is required for lens formation and for correct placement of a single retina in the eye. Genes Dev.14, 2701-2711. 3. Bernier, G., Panitz, F., Zhou, X., Hollemann, T., Gruss, P. and Pieler, T. (2000). Expanded retina territory by midbrain transformation upon over expression of Six6 (Optx2) in Xenopus embryos. Mech. Dev.93, 59-69. 4. Bonini, N. M., Bui, Q. T., Gray-Board, G. L. and Warrick, J. M. (1997). The Drosophila eyes absent gene directs ectopic eye formation in a pathway conserved between flies and vertebrates. Development124, 4819-4826. 5. Burmeister, M., Novak, J., Liang, M-Y., Basu, S., Ploder, L., Hawes, N. L., Vidgen, D., Hoover, F., Goldman, D., Kalnins, V. I., Roderick, T. H., Taylor, B. A., Hankin, M. H., McInnes, R. R. (1996). Ocular retardation mouse caused by Chx10 homeobox null allele: impaired retinal progenitor proliferation and bipolar cell differentiation. Nat. Genet.12, 376-383.
Cited by
33 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|