Notch signalling acts in postmitotic avian myogenic cells to control MyoD activation

Author:

Hirsinger E.1,Malapert P.1,Dubrulle J.1,Delfini M.C.1,Duprez D.1,Henrique D.1,Ish-Horowicz D.1,Pourquie O.1

Affiliation:

1. Laboratoire de Genetique et de Physiologie du Developpement, Developmental Biology Institute of Marseille, CNRS-INSERM-Universite de Mediterranee-AP de Marseille, Campus de Luminy - Case 907, France.

Abstract

During Drosophila myogenesis, Notch signalling acts at multiple steps of the muscle differentiation process. In vertebrates, Notch activation has been shown to block MyoD activation and muscle differentiation in vitro, suggesting that this pathway may act to maintain the cells in an undifferentiated proliferative state. In this paper, we address the role of Notch signalling in vivo during chick myogenesis. We first demonstrate that the Notch1 receptor is expressed in postmitotic cells of the myotome and that the Notch ligands Delta1 and Serrate2 are detected in subsets of differentiating myogenic cells and are thus in position to signal to Notch1 during myogenic differentiation. We also reinvestigate the expression of MyoD and Myf5 during avian myogenesis, and observe that Myf5 is expressed earlier than MyoD, consistent with previous results in the mouse. We then show that forced expression of the Notch ligand, Delta1, during early myogenesis, using a retroviral system, has no effect on the expression of the early myogenic markers Pax3 and Myf5, but causes strong down-regulation of MyoD in infected somites. Although Delta1 overexpression results in the complete lack of differentiated muscles, detailed examination of the infected embryos shows that initial formation of a myotome is not prevented, indicating that exit from the cell cycle has not been blocked. These results suggest that Notch signalling acts in postmitotic myogenic cells to control a critical step of muscle differentiation.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3