The receptor-like tyrosine phosphatase Lar is required for epithelial planar polarity and for axis determination with Drosophila ovarian follicles

Author:

Frydman Horacio M.1,Spradling Allan C.1

Affiliation:

1. Howard Hughes Medical Institute, Department of Embryology, Carnegie Institution of Washington, 115 West University Parkway, Baltimore, MD 21210,USA

Abstract

The follicle cell monolayer that encircles each developingDrosophila oocyte contributes actively to egg development and patterning, and also represents a model stem cell-derived epithelium. We have identified mutations in the receptor-like transmembrane tyrosine phosphataseLar that disorganize follicle formation, block egg chamber elongation and disrupt Oskar localization, which is an indicator of oocyte anterior-posterior polarity. Alterations in actin filament organization correlate with these defects. Actin filaments in the basal follicle cell domain normally become polarized during stage 6 around the anterior-posterior axis defined by the polar cells, but mutations in Lar frequently disrupt polar cell differentiation and actin polarization. Lar function is only needed in somatic cells, and (for Oskar localization) its action is autonomous to posterior follicle cells. Polarity signals may be laid down by these cells within the extracellular matrix (ECM), possibly in the distribution of the candidate Lar ligand Laminin A, and read out at the time Oskar is localized in a Lar-dependent manner. Lar is not required autonomously to polarize somatic cell actin during stages 6. We show thatLar acts somatically early in oogenesis, during follicle formation,and postulate that it functions in germarium intercyst cells that are required for polar cell specification and differentiation. Our studies suggest that positional information can be stored transiently in the ECM. A major function of Lar may be to transduce such signals.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

Reference79 articles.

1. Arora, K., Levine, M. S. and O'Connor, M. B.(1994). The screw gene encodes a ubiquitously expressed member of the TGF-beta family required for specification of dorsal cell fates in theDrosophila embryo. Genes Dev.8,2588-2601.

2. Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D.,Seidman, J. G., Smith, J. A. and Struhl, K. (1987).Current Protocols in Molecular Biology. New York,Wiley.

3. Baum, B., Li, W. and Perrimon, N. (2000). A cyclase-associated protein regulates actin and cell polarity duringDrosophila oogenesis and in yeast. Curr. Biol.10,964-973.

4. Benlali, A., Draskovic, I., Hazelett, D. J. and Treisman, J. E. (2000). act up controls actin polymerization to alter cell shape and restrict Hedgehog signalling in the Drosophilaeye disc. Cell101,271-281.

5. Bilder, D. and Perrimon, N. (2000). Localization of apical epithelial determinants by the basolateral PDZ protein Scribble. Nature406,676-680.

Cited by 81 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3