Affiliation:
1. Plant Gene Expression Center, Agricultural Research Service – USDA, 800 Buchanan St, Albany, CA 94710, USA and Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
Abstract
Organogenesis in plants is controlled by meristems. Shoot apical meristems form at the apex of the plant and produce leaf primordia on their flanks. Axillary meristems, which form in the axils of leaf primordia, give rise to branches and flowers and therefore play a critical role in plant architecture and reproduction. To understand how axillary meristems are initiated and maintained, we characterized the barren inflorescence2 mutant, which affects axillary meristems in the maize inflorescence. Scanning electron microscopy, histology and RNA in situ hybridization using knotted1 as a marker for meristematic tissue show that barren inflorescence2 mutants make fewer branches owing to a defect in branch meristem initiation. The construction of the double mutant between barren inflorescence2 and tasselsheath reveals that the function of barren inflorescence2 is specific to the formation of branch meristems rather than bract leaf primordia. Normal maize inflorescences sequentially produce three types of axillary meristem: branch meristem, spikelet meristem and floral meristem. Introgression of the barren inflorescence2 mutant into genetic backgrounds in which the phenotype was weaker illustrates additional roles of barren inflorescence2 in these axillary meristems. Branch, spikelet and floral meristems that form in these lines are defective, resulting in the production of fewer floral structures. Because the defects involve the number of organs produced at each stage of development, we conclude that barren inflorescence2 is required for maintenance of all types of axillary meristem in the inflorescence. This defect allows us to infer the sequence of events that takes place during maize inflorescence development. Furthermore, the defect in branch meristem formation provides insight into the role of knotted1 and barren inflorescence2 in axillary meristem initiation.
Publisher
The Company of Biologists
Subject
Developmental Biology,Molecular Biology
Reference60 articles.
1. Ambrose, B. A., Lerner, D. R., Ciceri, P., Padilla, C. M., Yanofsky, M. F. and Schmidt, R. J. (2000). Molecular and genetic analyses of the silky1 gene reveal conservation in floral organ specification between eudicots and monocots. Mol. Cell5, 569-579.
2. Beckett, J. B. (1993). Locating recessive genes to chromosome arm with B-A translocations. In The Maize Handbook (ed. M. Freeling and V. Walbot), pp. 315-327. New York: Springer Verlag.
3. Bennett, S. R. M., Alvarez, J., Bossinger, G. and Smyth, D. R. (1995). Morphogenesis in pinoid mutants of Arabidopsis thaliana. Plant J.8, 505-520.
4. Bohmert, K., Camus, I., Bellini, C., Bouchez, D., Caboche, M. and Benning, C. (1998). AGO1 defines a novel locus of Arabidopsis controlling leaf development. EMBO J.17, 170-180.
5. Bonnett, O. T. (1948). Ear and tassel development in maize. Ann. Missouri Botanical Garden35, 269-287.
Cited by
79 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献