OTD/OTX2 functional equivalence depends on 5′ and 3′ UTR-mediated control ofOtx2mRNA for nucleo-cytoplasmic export and epiblast-restricted translation

Author:

Acampora Dario12,Boyl Pietro Pilo1,Signore Massimo1,Martinez-Barbera Juan Pedro1,Ilengo Cristina3,Puelles Eduardo1,Annino Alessandro2,Reichert Heinrich4,Corte Giorgio35,Simeone Antonio12

Affiliation:

1. MRC Centre for Developmental Neurobiology, King’s College London, Guy’s Campus, New Hunts House, London SE1 9RT, UK

2. International Institute of Genetics and Biophysics, CNR, Via G. Marconi 12, 80125 Naples, Italy

3. IST-National Institute for Cancer Research,

4. Institute of Zoology, University of Basel, Rheinsprung 9, CH-4051 Basel, Switzerland

5. Dipartimento di Oncologia Clinica e Sperimentale, Università di Genova, Largo Benzi, 16132 Genova, Italy

Abstract

How gene activity is translated into phenotype and how it can modify morphogenetic pathways is of central importance when studying the evolution of regulatory control mechanisms. Previous studies in mouse have suggested that, despite the homeodomain-restricted homology, Drosophila orthodenticle (otd) and murine Otx1 genes share functional equivalence and that translation of Otx2 mRNA in epiblast and neuroectoderm might require a cell type-specific post-transcriptional control depending on its 5′ and 3′ untranslated sequences (UTRs).In order to study whether OTD is functionally equivalent to OTX2 and whether synthesis of OTD in epiblast is molecularly dependent on the post-transcriptional control of Otx2 mRNA, we generated a first mouse model (otd2) in which an Otx2 region including 213 bp of the 5′ UTR, exons, introns and the 3′ UTR was replaced by an otd cDNA and a second mutant (otd2FL) replacing only exons and introns of Otx2 with the otd coding sequence fused to intact 5′ and 3′ UTRs of Otx2.otd2 and otd2FL mRNAs were properly transcribed under the Otx2 transcriptional control, but mRNA translation in epiblast and neuroectoderm occurred only in otd2FL mutants. Phenotypic analysis revealed that visceral endoderm (VE)-restricted translation of otd2 mRNA was sufficient to rescue Otx2 requirement for early anterior patterning and proper gastrulation but it failed to maintain forebrain and midbrain identity.Importantly, epiblast and neuroectoderm translation of otd2FL mRNA rescued maintenance of anterior patterning as it did in a third mouse model replacing, as in otd2FL, exons and introns of Otx2 with an Otx2 cDNA (Otx22c). The molecular analysis has revealed that Otx2 5′ and 3′ UTR sequences, deleted in the otd2 mRNA, are required for nucleo-cytoplasmic export and epiblast-restricted translation. Indeed, these molecular impairments were completely rescued in otd2FL and Otx22c mutants. These data provide novel in vivo evidence supporting the concept that during evolution pre-existing gene functions have been recruited into new developmental pathways by modifying their regulatory control.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

Reference48 articles.

1. Acampora, D. and Simeone, A. (1999). Understanding the roles of Otx1 and Otx2 in controlling brain morphogenesis. Trends Neurosci.22, 116-122.

2. Acampora, D., Mazan, S., Lallemand, Y., Avantaggiato, V., Maury, M., Simeone, A. and Brûlet, P. (1995). Forebrain and midbrain regions are deleted in Otx2–/– mutants due to a defective anterior neuroectoderm specifiction during gastrulation. Development121, 3279-3290.

3. Acampora, D., Mazan, S., Avantaggiato, V., Barone, P., Tuorto, F., Lallemand, Y., Brûlet, P. and Simeone, A. (1996). Epilepsy and brain abnormalities in mice lacking Otx1 gene. Nature Genet.14, 218-222.

4. Acampora, D., Avantaggiato, V., Tuorto, F. and Simeone, A. (1997). Genetic control of brain morphogenesis through Otx gene dosage requirement. Development124, 3639-3650.

5. Acampora, D., Avantaggiato, V., Tuorto, F., Barone, P., Reichert, H., Finkelstein, R. and Simeone, A. (1998a). Murine Otx1 and Drosophila otd genes share conserved genetic functions required in invertebrate and vertebrate brain development. Development125, 1691-1702.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3