Survival and glial fate acquisition of neural crest cells are regulated by an interplay between the transcription factor Sox10 and extrinsic combinatorial signaling

Author:

Paratore Christian1,Goerich Derk E.2,Suter Ueli1,Wegner Michael2,Sommer Lukas1

Affiliation:

1. Institute of Cell Biology, Swiss Federal Institute of Technology, ETH-Hönggerberg, CH-8093 Zurich, Switzerland

2. Institute of Biochemistry, University of Erlangen-Nürnberg, Fahrstrasse 17, 91054 Erlangen, Germany

Abstract

The transcription factor Sox10 is required for proper development of various neural crest-derived cell types. Several lineages including melanocytes, autonomic and enteric neurons, and all subtypes of peripheral glia are missing in mice homozygous for Sox10 mutations. Moreover, haploinsufficiency of Sox10 results in neural crest defects that cause Waardenburg/Hirschsprung disease in humans. We provide evidence that the cellular basis to these phenotypes is likely to be a requirement for Sox10 by neural crest stem cells before lineage segregation. Cell death is increased in undifferentiated, postmigratory neural crest cells that lack Sox10, suggesting a role of Sox10 in the survival of neural crest cells. This function is mediated by neuregulin, which acts as a survival signal for postmigratory neural crest cells in a Sox10-dependent manner. Furthermore, Sox10 is required for glial fate acquisition, as the surviving mutant neural crest cells are unable to adopt a glial fate when challenged with different gliogenic conditions. In Sox10 heterozygous mutant neural crest cells, survival appears to be normal, while fate specifications are drastically affected. Thereby, the fate chosen by a mutant neural crest cell is context dependent. Our data indicate that combinatorial signaling by Sox10, extracellular factors such as neuregulin 1, and local cell-cell interactions is involved in fine-tuning lineage decisions by neural crest stem cells. Failures in fate decision processes might thus contribute to the etiology of Waardenburg/Hirschsprung disease.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

Cited by 172 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3