Otx genes are required for tissue specification in the developing eye
Author:
Martinez-Morales Juan Ramon1, Signore Massimo23, Acampora Dario23, Simeone Antonio23, Bovolenta Paola1
Affiliation:
1. Instituto Cajal, CSIC, Dr Arce 37, Madrid 28002, Spain 2. MRC Centre for Developmental Neurobiology, New Hunt’s House, 4th Floor, King’s College London, Guy’s Campus, London Bridge, London SE11 9RT, UK 3. International Institute of Genetics and Biophysics, CNR, Via Marconi, 12, 80125 Naples, Italy
Abstract
Patterning of the vertebrate eye appears to be controlled by the mutual regulation and the progressive restriction of the expression domains of a number of genes initially co-expressed within the eye anlage. Previous data suggest that both Otx1 and Otx2 might contribute to the establishment of the different eye territories. Here, we have analysed the ocular phenotype of mice carrying different functional copies of Otx1 and Otx2 and we show that these genes are required in a dose-dependent manner for the normal development of the eye. Thus, all Otx1−/−; Otx2+/− and 30% of Otx1+/−; Otx2+/− genotypes presented consistent and profound ocular malformation, including lens, pigment epithelium, neural retina and optic stalk defects. During embryonic development, optic vesicle infolding was severely altered and the expression of pigment epithelium-specific genes, such as Mitf or tyrosinase, was lost. Lack of pigment epithelium specification was associated with an expansion of the prospective neural retina and optic stalk territories, as determined by the expression of Pax6, Six3 and Pax2. Later in development the presumptive pigment epithelium region acquired features of mature neural retina, including the generation of Islet1-positive neurones. Furthermore, in Otx1−/−; Otx2+/− mice neural retina cell proliferation, cell differentiation and apoptotic cell death were also severely affected. Based on these findings we propose a model in which Otx gene products are required for the determination and differentiation of the pigment epithelium, co-operating with other eye patterning genes in the determination of the specialised tissues that will constitute the mature vertebrate eye.
Publisher
The Company of Biologists
Subject
Developmental Biology,Molecular Biology
Reference73 articles.
1. Acampora, D., Mazan, S., Lallemand, Y., Avantaggiato, V., Maury, M., Simeone, A. and Brulet, P. (1995). Forebrain and midbrain regions are deleted in Otx2−/− mutants due to a defective anterior neuroectoderm specification during gastrulation. Development121, 3279-3290. 2. Acampora, D., Mazan, S., Avantaggiato, V., Barone, P., Tuorto, F., Lallemand, Y., Brulet, P. and Simeone, A. (1996). Epilepsy and brain abnormalities in mice lacking the Otx1 gene. Nat. Genet. 14, 218-222. 3. Acampora, D., Avantaggiato, V., Tuorto, F. and Simeone, A. (1997). Genetic control of brain morphogenesis through Otx gene dosage requirement. Development124, 3639-3650. 4. Acampora, D., Avantaggiato, V., Tuorto, F., Briata, P., Corte, G. and Simeone, A. (1998). Visceral endoderm-restricted translation of Otx1 mediates recovery of Otx2 requirements for specification of anterior neural plate and normal gastrulation. Development125, 5091-5104. 5. Acampora, D. and Simeone, A. (1999). The TINS Lecture. Understanding the roles of Otx1 and Otx2 in the control of brain morphogenesis. Trends Neurosci. 22, 116-122.
Cited by
152 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|