Neuromodulation of the locust frontal ganglion during the moult: a novel role for insect ecdysis peptides

Author:

Zilberstein Y.1,Ewer J.2,Ayali A.1

Affiliation:

1. Department of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel

2. Entomology Department, Cornell University, Ithaca, NY 14853,USA

Abstract

SUMMARYIn insects, continuous growth requires the periodic replacement of the exoskeleton during the moult. A moulting insect displays a stereotypical set of behaviours that culminate in the shedding of the old cuticle at ecdysis. Moulting is an intricate process requiring tightly regulated physiological changes and behaviours to allow integration of environmental cues and to ensure the proper timing and sequence of its components. This is under complex hormonal regulation, and is an important point of interaction between endocrine and neural control.Here, we focus on the locust frontal ganglion (FG), an important player in moulting behaviour, as a previously unexplored target for ecdysis peptides. We show that application of 10-7 mol l-1 ecdysis-triggering hormone (ETH) or 10-7 mol l-1 and 10-6 mol l-1 Pre-ecdysis-triggering hormone (PETH) to an isolated FG preparation caused an increase in bursting frequency in the FG, whereas application of 10-6 mol l-1 eclosion hormone (EH) caused an instantaneous, though temporary, total inhibition of all FG rhythmic activity. Crustacean cardioactive peptide (CCAP), an important peptide believed to turn on ecdysis behaviour, caused a dose-dependent increase of FG burst frequency. Our results imply a novel role for this peptide in generating air-swallowing behaviour during the early stages of ecdysis. Furthermore, we show that the modulatory effects of CCAP on the FG motor circuits are dependent on behavioural state and physiological context. Thus, we report that pre-treatment with ETH caused CCAP-induced effects similar to those induced by CCAP alone during pre-ecdysis. Thus, the action of CCAP seems to depend on pre-exposure to ETH, which is thought to be released before CCAP in vivo.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3