Heterotrimeric G proteins form stable complexes with adenylyl cyclase and Kir3.1 channels in living cells

Author:

Rebois R. Victor11,Robitaille Mélanie23,Galés Céline2,Dupré Denis J.3,Baragli Alessandra3,Trieu Phan3,Ethier Nathalie3,Bouvier Michel2,Hébert Terence E.23

Affiliation:

1. Laboratory of Cellular Biology, 5 Research Court, National Institute of Deafness and Communicative Disorders, National Institutes of Health, Rockville, MD 20850, USA

2. Département de Biochimie, Université de Montréal, Montréal, Québec, H3C 3J7 Canada

3. Department of Pharmacology and Therapeutics, McGill University, McIntyre Medical Sciences Building, 3655 Promenade Sir William Osler, Montréal, Québec, H3G 1Y6, Canada

Abstract

Bioluminescence resonance energy transfer (BRET) and co-immunoprecipitation experiments revealed that heterotrimeric G proteins and their effectors were found in stable complexes that persisted during signal transduction. Adenylyl cyclase, Kir3.1 channel subunits and several G-protein subunits (Gαs, Gαi, Gβ1 and Gγ2) were tagged with luciferase (RLuc) or GFP, or the complementary fragments of YFP (specifically Gβ1-YFP1-158 and Gγ2-YFP159-238, which heterodimerize to produce fluorescent YFP-Gβ1γ2). BRET was observed between adenylyl-cyclase-RLuc or Kir3.1-RLuc and GFP-Gγ2, GFP-Gβ1 or YFP-Gβ1γ2. Gα subunits were also stably associated with both effectors regardless of whether or not signal transduction was initiated by a receptor agonist. Although BRET between effectors and Gβγ was increased by receptor stimulation, our data indicate that these changes are likely to be conformational in nature. Furthermore, receptor-sensitive G-protein-effector complexes could be detected before being transported to the plasma membrane, providing the first direct evidence for an intracellular site of assembly.

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 125 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3