A desert bee thermoregulates with an abdominal convector during flight

Author:

Johnson Meredith G.1ORCID,Glass Jordan R.1,Harrison Jon F.1ORCID

Affiliation:

1. School of Life Sciences, Arizona State University , 427 East Tyler Mall, Tempe, AZ 85281 , USA

Abstract

ABSTRACT Flying endothermic insects thermoregulate, likely to improve flight performance. Males of the Sonoran Desert bee, Centris caesalpiniae, seek females at aggregations beginning at sunrise and cease flight near midday when the air temperature peaks. To identify the thermoregulatory mechanisms for C. caesalpiniae males, we measured tagma temperature, wingbeat frequency, water loss rate, metabolic rate and tagma mass of flying bees across shaded air temperatures of 19–38°C. Surface area, wet mass and dry mass declined with air temperature, suggesting that individual bees do not persist for the entire morning. The largest bees may be associated with cool, early mornings because they are best able to warm themselves and/or because they run the risk of overheating in the hot afternoons. Thorax temperature was high (38–45°C) and moderately well regulated, while head and abdomen temperatures were cooler and less controlled. The abdominal temperature excess ratio increased as air temperature rose, indicating active heat transfer from the pubescent thorax to the relatively bare abdomen with warming. Mass-specific metabolic rate increased with time, and air and thorax temperatures, but wingbeat frequency did not vary. Mass-specific water loss rate increased with air temperature, but this was a minor mechanism of thermoregulation. Using a heat budget model, we showed that whole-body convective conductance more than doubled through the morning, providing strong evidence that the primary mechanism of regulating thorax temperature during flight for these bees is increased use of the abdomen as a convector at higher air temperatures.

Funder

Fulbright Association

United States Department of Agriculture

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3