The persistent effects of corticosterone administration during lactation on the physiology of maternal and offspring mitochondria

Author:

Yap Kang Nian12ORCID,Andreasen Victoria A.13,Williams Ashley S.1,Yamada KayLene Y.1,Zikeli Shelby1,Kavazis Andreas N.4,Hood Wendy R.1ORCID

Affiliation:

1. 1 Department of Biological Sciences, Auburn University, 101 Rouse Life Science Building, Auburn, Alabama 36849, USA

2. 2 Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway

3. 3 Department of Population Health, University of Georgia, 589 D.W. Brooks Drive, Athens, Georgia 30602, USA

4. 4 School of Kinesiology, Auburn University, 301 Wire Road, Auburn, Alabama 36849, USA

Abstract

Reproduction and environmental stressors are generally thought to be associated with a cost to the individual experiencing them, but the physiological mechanisms mediating costs of reproduction and maternal effects remain poorly understood. Studies examining the effects of environmental stressors on a female's physiological state and body condition during reproduction, as well as physiological condition of offspring, have yielded equivocal results. Mitochondrial physiology and oxidative stress have been implicated as important mediators of life-history trade-offs. The goal of this investigation was to uncover the physiological mechanisms responsible for the enhanced trade-off between self-maintenance and offspring investment when an animal is exposed to stressful conditions during reproduction. To that end, we manipulated circulating corticosterone (CORT) levels by orally supplementing lactating female mice with CORT and investigated mitochondrial physiology and oxidative stress of both the reproductive females and their young. We found that maternal CORT exposure resulted in lower litter mass at weaning, but mitochondrial performance and oxidative status of females were not impacted. We also found potential beneficial effects of maternal CORT on mitochondrial function (e.g. higher respiratory control ratio) and oxidative stress (e.g. lower reactive oxygen species production) of offspring in adulthood, suggesting that elevated maternal CORT may be a signal for early-life adversity and prepare the organism with a predictive, adaptive response for future stressors.

Funder

National Science Foundation

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3