Activation of p53 in anoxic freshwater crayfish, Faxonius virilis

Author:

Gupta Aakriti1ORCID,Breedon Sarah A.1ORCID,Storey Kenneth B.1ORCID

Affiliation:

1. Carleton University Department of Biology , , Ottawa, ON , Canada , K1S 5B6

Abstract

ABSTRACT Tumor suppressing transcription factor p53 regulates multiple pathways including DNA repair, cell survival, apoptosis and autophagy. Here, we studied the stress-induced activation of p53 in anoxic crayfish (Faxonius virilis). Relative levels of target proteins and mRNAs involved in the DNA damage response were measured in normoxic control and anoxic hepatopancreas and tail muscle. Phosphorylation levels of p53 were assessed using immunoblotting at sites known to be phosphorylated (serine 15 and 37) in response to DNA damage or reduced oxygen signaling. The capacity for DNA binding by phosphorylated p53 (p-p53) was also measured, followed by transcript analysis of a potentially pro-apoptotic downstream target, the etoposide induced (ei24) gene. Following this, both inhibitor (MDM2) and activator (p19-ARF) protein levels in response to low-oxygen stress were studied. The results showed an increase in p-p53 levels during anoxia in both hepatopancreas and tail muscle. Increased transcript levels of ei24 support the activation of p53 under anoxic stress. Cytoplasmic accumulation of Ser15 phosphorylated p53 was observed during anoxia when proteins from cytoplasmic and nuclear fractions were measured. Increased cytoplasmic concentration is known to initiate an apoptotic response, which can be assumed as a preparatory step to prevent autophagy. The results suggest that p53 might play a protective role in crayfish defense against low-oxygen stress. Understanding how anoxia-tolerant organisms are able to protect themselves against DNA damage could provide important clues towards survival under metabolic rate depression and preparation for recovery to minimize damage.

Funder

Natural Sciences and Engineering Research Council of Canada

Canada Research Chair

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3