Regulation of lung endoderm progenitor cell behavior by miR302/367

Author:

Tian Ying1,Zhang Yuzhen1,Hurd Laura2,Hannenhalli Sridhar3,Liu Feiyan1,Lu Min Min1,Morrisey Edward E.1245

Affiliation:

1. Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA

2. Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA

3. Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA

4. Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA

5. Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA 19104, USA

Abstract

The temporal and spatial control of organ-specific endoderm progenitor development is poorly understood. miRNAs affect cell function by regulating programmatic changes in protein expression levels. We show that the miR302/367 cluster is a target of the transcription factor Gata6 in mouse lung endoderm and regulates multiple aspects of early lung endoderm progenitor development. miR302/367 is expressed at early stages of lung development, but its levels decline rapidly as development proceeds. Gain- and loss-of-function studies show that altering miR302/367 expression disrupts the balance of lung endoderm progenitor proliferation and differentiation, as well as apical-basal polarity. Increased miR302/367 expression results in the formation of an undifferentiated multi-layered lung endoderm, whereas loss of miR302/367 activity results in decreased proliferation and enhanced lung endoderm differentiation. miR302/367 coordinates the balance between proliferation and differentiation, in part, through direct regulation of Rbl2 and Cdkn1a, whereas apical-basal polarity is controlled by regulation of Tiam1 and Lis1. Thus, miR302/367 directs lung endoderm development by coordinating multiple aspects of progenitor cell behavior, including proliferation, differentiation and apical-basal polarity.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3