Affiliation:
1. Department of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Delft, The Netherlands
2. Department of Mechanical Engineering, Stanford University, Stanford, California, USA
3. Engineering and the Environment, University of Southampton, Southampton, UK
Abstract
Swifts are aerodynamically sophisticated birds with a small arm and large hand wing that provides them with exquisite control over their glide performance. However, their hand wings have a seemingly unsophisticated surface roughness that is poised to disturb flow. This roughness of about 2% chord length is formed by the valleys and ridges of overlapping primary feathers with thick protruding rachides, which make the wing stiffer. An earlier flow study of laminar–turbulent boundary layer transition over prepared swift wings suggests that swifts can attain laminar flow at low angle-of-attack. In contrast, aerodynamic design theory suggests that airfoils must be extremely smooth to attain such laminar flow. In hummingbirds, which have similarly rough wings, flow measurements on a 3D printed model suggests that the flow separates at the leading edge and becomes turbulent well above the rachis bumps in a detached shear layer. The aerodynamic function of wing roughness in small birds is, therefore, not fully understood. Here we perform particle image velocimetry and force measurements to compare smooth versus rough 3D-printed models of the swift hand wing. The high-resolution boundary layer measurements show that the flow over rough wings is indeed laminar at low angle-of-attack and Reynolds number, but becomes turbulent at higher values. In contrast, the boundary layer over the smooth wing forms open laminar separation bubbles that extend beyond the trailing edge. The boundary layer dynamics of the smooth surface varies nonlinear as a function of angle-of-attack and Reynolds number, whereas the rough surface boasts more consistent turbulent boundary layer dynamics. Comparison of the corresponding drag values, lift values, and glide ratios suggests, however, that glide performance is equivalent. The increased structural performance, boundary layer robustness, and equivalent aerodynamic performance of rough wings might have provided small (proto) birds with an evolutionary window to high glide performance.
Publisher
The Company of Biologists
Subject
Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics
Cited by
41 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献