The acute effects of higher versus lower load duration and intensity on morphological and mechanical properties of the healthy Achilles tendon: a randomized crossover trial

Author:

Merza Eman Y.1ORCID,Pearson Stephen J.2,Lichtwark Glen A.3,Malliaras Peter1

Affiliation:

1. Department of Physiotherapy, Faculty of Medicine, Nursing and Health Science, Monash University, Frankston, VIC 3199, Australia

2. Centre for Health, Sport and Rehabilitation Sciences Research, University of Salford, Greater Manchester M5 4WT, UK

3. Centre for Sensorimotor Performance, School of Human Movement and Nutrition Sciences, The University of Queensland, St Lucia, QLD 4072, Australia

Abstract

ABSTRACT The Achilles tendon (AT) exhibits volume changes related to fluid flow under acute load which may be linked to changes in stiffness. Fluid flow provides a mechanical signal for cellular activity and may be one mechanism that facilitates tendon adaptation. This study aimed to investigate whether isometric intervention involving a high level of load duration and intensity could maximize the immediate reduction in AT volume and stiffness compared with interventions involving a lower level of load duration and intensity. Sixteen healthy participants (12 males, 4 females; age 24.4±9.4 years, body mass 70.9±16.1 kg, height 1.7±0.1 m) performed three isometric interventions of varying levels of load duration (2 s and 8 s) and intensity (35% and 75% maximal voluntary isometric contraction) over a 3 week period. Freehand 3D ultrasound was used to measure free AT volume (at rest) and length (at 35%, 55% and 75% of maximum plantarflexion force) pre- and post-interventions. The slope of the force–elongation curve over these force levels represented individual stiffness (N mm−1). Large reductions in free AT volume and stiffness resulted in response to long-duration high-intensity loading whilst less reduction was produced with a lower load intensity. In contrast, no change in free AT volume and a small increase in AT stiffness occurred with lower load duration. These findings suggest that the applied load on the AT must be heavy and sustained for a long duration to maximize immediate volume reduction, which might be an acute response that enables optimal long-term tendon adaptation via mechanotransduction pathways.

Funder

Monash University

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3