Rates of warming impact oxidative stress in zebrafish (Danio rerio)

Author:

Loughland Isabella1,Lau Gigi Y.2ORCID,Jolly Jordan1,Seebacher Frank1ORCID

Affiliation:

1. School of Life and Environmental Sciences A08, University of Sydney, Sydney, NSW 2006, Australia

2. Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Blindernveien 31, Postbox 1066, Blindern, Oslo NO-0316, Norway

Abstract

ABSTRACT Potentially negative effects of thermal variation on physiological functions may be modulated by compensatory responses, but their efficacy depends on the time scale of phenotypic adjustment relative to the rate of temperature change. Increasing temperatures in particular can affect mitochondrial bioenergetics and rates of reactive oxygen species (ROS) production. Our aim was to test whether different rates of temperature increase affect mitochondrial bioenergetics and modulate oxidative stress. We exposed zebrafish (Danio rerio) to warming from 20°C to 28°C over 3, 6, 24 or 48 h, and compared these with a control group that was kept at constant 20°C. Fish exposed to the fastest (3 h) and slowest (48 h) rates of warming had significantly higher rates of H2O2 production relative to the control treatment, and the proportion of O2 converted to H2O2 (H2O2/O2 ratio) was significantly greater in these groups. However, ROS production was not paralleled by differences in mitochondrial substrate oxidation rates, leak respiration rates or coupling (respiratory control ratios). Increased rates of ROS production did not lead to damage of proteins or membranes, which may be explained by a moderate increase in catalase activity at the fastest, but not the slowest, rate of warming. The increase in ROS production at the slowest rate of warming indicates that even seemingly benign environments may be stressful. Understanding how animals respond to different rates of temperature change is important, because the rate determines the time period for phenotypic adjustments and it also alters the environmental thermal signal that triggers compensatory pathways.

Funder

Australian Research Council

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Reference45 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3