Affiliation:
1. CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos da Universidade do Porto, Portugal
2. Ethology Lab, Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Universitat de València, Spain
Abstract
Colour polymorphisms are thought to be maintained by complex evolutionary processes some of which require that the colours of the alternative morphs function as chromatic signals to conspecifics. Unfortunately, a key aspect of this hypothesis has rarely been studied: whether the study species perceives its own colour variation as discrete rather than continuous. The European common wall lizard (Podarcis muralis) presents a striking colour polymorphism: the ventral surface of adults of both sexes may be coloured orange, white, yellow, or with a mosaic of scales combining two colours (orange-white, orange-yellow). Here we use a discrimination learning paradigm to test if P. muralis is capable of discriminating colour stimuli designed to match the ventral colours of conspecifics. We trained 20 lizards to eat from colour-coded wells bored in wooden blocks. Blocks had four colour-coded wells (orange, white, yellow, and an achromatic control), but only one contained food (mealworm larvae). After six trials, the lizards performed significantly better than expected by chance, showing a decrease in both the number of wells explored and the latency to finding the food. Using visual modelling techniques we found that, based on their spectral properties and the lizards’ cone sensitivities, the ventral colours of P. muralis correspond to discrete rather than continuous colour categories, and that colour discriminability (i.e. distance in perceptual space) varies depending on the morphs compared, which may have implications for signal detection and discrimination. These results suggest that P. muralis can discriminate hue differences matching their own ventral colour variation.
Funder
Fundação para a Ciência e a Tecnologia
Ministerio de Educaci?n, Cultura y Deporte
Publisher
The Company of Biologists
Subject
Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献