AMBRA1 promotes dsRNA- and virus-induced apoptosis through interacting with and stabilizing MAVS

Author:

Lin Yuxia12,Huang Changbai12,Gao Huixin12,Li Xiaobo12,Lin Quanshi12,Zhou Shili12,Huo Zhiting12,Huang Yanxia12,Liu Chao13,Zhang Ping12ORCID

Affiliation:

1. Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China

2. Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China

3. Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China

Abstract

ABSTRACT Apoptosis is an important cellular response to viral infection. In this study, we identified activating molecule in Beclin1-regulated autophagy protein 1 (AMBRA1) as a positive regulator of apoptosis triggered by double-stranded (ds)RNA. Depletion of AMBRA1 by gene editing significantly reduced dsRNA-induced apoptosis, which was largely restored by trans-complementation of AMBRA1. Mechanistically, AMBRA1 interacts with mitochondrial antiviral-signaling protein (MAVS), a key mitochondrial adaptor in the apoptosis pathway induced by dsRNA and viral infection. Further co-immunoprecipitation analysis demonstrated that the mitochondrial localization of MAVS was essential for their interaction. The impact of AMBRA1 on dsRNA-induced apoptosis relied on the presence of MAVS and caspase-8. AMBRA1 was involved in the stabilization of MAVS through preventing its dsRNA-induced proteasomal degradation. Consistently, AMBRA1 upregulated the apoptosis induced by Semliki Forest virus infection. Taken together, our work illustrated a role for AMBRA1 in virus-induced apoptosis through interacting with and stabilizing MAVS.

Funder

National Natural Science Foundation of China

Guangdong Provincial Applied Science and Technology Research and Development Program

Natural Science Foundation of Guangdong Province

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3