Departures from isotropy: the kinematics of a larval snail in response to food

Author:

DiBenedetto Michelle H.123ORCID,Meyer-Kaiser Kirstin S.1,Torjman Brooke4,Wheeler Jeanette D.15,Mullineaux Lauren S.1

Affiliation:

1. Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA

2. Physical Oceanography Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA

3. Mechanical Engineering Department, University of Washington, Seattle, WA 98115, USA

4. Muhlenberg College, Allentown, PA 18104, USA

5. Institute of Environmental Engineering, Department of Civil, Environmental, and Geomatic Engineering, ETH Zürich, 8093 Zürich, Switzerland

Abstract

The swimming behavior of invertebrate larvae can affect their dispersal, survival, and settlement in the ocean. Modelling this behavior accurately poses unique challenges as behavior is controlled both by physiology and environmental cues. Some larvae use cilia to both swim and create feeding currents, resulting in potential trade-offs between the two functions. Food availability is naturally patchy and often occurs in shallow horizontal layers in the ocean. Also, larval swimming motions generally differ in the horizontal and vertical. In order to investigate behavioral response to food by ciliated larvae, we measure their behavioral anisotropy by quantifying deviations from a model based in isotropic diffusion. We hypothesize that larvae will increase horizontal swimming and decrease vertical swimming after encountering food which could lead to aggregation at food layers. We consider Crepidula fornicata larvae which are specifically of interest as they exhibit unsteady and variable swimming behaviors that are difficult to categorize. We tracked the larvae in still water with and without food, with a portion of the larvae starved beforehand. On average, larvae in the presence of food were observed higher in the water column, with higher swimming speeds and higher horizontal swimming velocities when compared to larvae without food. Starved larvae also exhibited higher vertical velocities in food, suggesting no aggregation behavior. While most treatments showed strong anisotropy in larval behavior, we found that starved larvae without food exhibited approximately isotropic kinematics, indicating that behavioral anisotropy can vary with environmental history and conditions to enhance foraging success or mitigate food-poor environments.

Funder

Woods Hole Oceanographic Institution

NSF

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3