Ammonia inhibits energy metabolism in astrocytes in a rapid and glutamate dehydrogenase 2-dependent manner

Author:

Drews Leonie1,Zimmermann Marcel1,Westhoff Philipp23,Brilhaus Dominik23ORCID,Poss Rebecca E.1,Bergmann Laura4,Wiek Constanze5,Brenneisen Peter1ORCID,Piekorz Roland P.4,Mettler-Altmann Tabea23,Weber Andreas P. M.23,Reichert Andreas S.1ORCID

Affiliation:

1. Institute for Biochemistry and Molecular Biology I, Medical Faculty, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany

2. Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany

3. Plant Metabolism and Metabolomics Laboratory, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany

4. Institute for Biochemistry and Molecular Biology II, Medical Faculty, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany

5. Department of Otorhinolaryngology and Head/Neck Surgery (ENT), Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany

Abstract

Astrocyte dysfunction is a primary factor in hepatic encephalopathy (HE) impairing neuronal activity under hyperammonemia. In particular the early events causing ammonia-induced toxicity to astrocytes are not well understood. Using established cellular HE models, we show that mitochondria rapidly undergo fragmentation in a reversible manner upon hyperammonemia. Further, within a timescale of minutes mitochondrial respiration and glycolysis were hampered which occurred in a pH-independent manner. Using metabolomics an accumulation of numerous amino acids, including branched chain amino acids and glucose was observed. Metabolomic tracking of 15N-labeled ammonia showed rapid incorporation of 15N into glutamate and glutamate-derived amino acids. Downregulating human GLUD2, encoding mitochondrial glutamate dehydrogenase 2 (GDH2), inhibiting GDH2 activity by SIRT4 overexpression, and supplementing cells with glutamate or glutamine alleviated ammonia-induced inhibition of mitochondrial respiration. Metabolomic tracking of 13C-glutamine showed that hyperammonemia can inhibit anaplerosis of TCA-cycle intermediates. Contrary to its classical anaplerotic role, we show that under hyperammonemia GDH2 rather catalyzes the removal of ammonia by reductive amination of α-ketoglutarate which efficiently and rapidly inhibits the TCA-cycle. Overall, we propose a critical GDH2-dependent mechanism in HE models that on the one hand helps to remove ammonia but on the other hand impairs energy metabolism in mitochondria rapidly.

Funder

Deutsche Forschungsgemeinschaft

Heinrich-Heine-Universität Düsseldorf

Publisher

The Company of Biologists

Subject

General Biochemistry, Genetics and Molecular Biology,Immunology and Microbiology (miscellaneous),Medicine (miscellaneous),Neuroscience (miscellaneous)

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3