Jumping mechanisms and performance in beetles. I. Flea beetles (Coleoptera: Chrysomelidae: Alticini)

Author:

Nadein Konstantin1ORCID,Betz Oliver1

Affiliation:

1. Evolutionary Biology of Invertebrates, Institute of Evolution and Ecology, Universität Tübingen, Auf der Morgenstelle 28E, 72076 Tübingen, Germany

Abstract

ABSTRACT The present study analyses the anatomy, mechanics and functional morphology of the jumping apparatus, the performance and the kinematics of the natural jump of flea beetles (Coleoptera: Chrysomelidae: Galerucinae: Alticini). The kinematic parameters of the initial phase of the jump were calculated for five species from five genera (average values from minimum to maximum): acceleration 0.91–2.25 (×103) m s−2, velocity 1.48–2.80 m s−1, time to take-off 1.35–2.25 ms, kinetic energy 2.43–16.5 µJ, g-force 93–230. The jumping apparatus is localized in the hind legs and formed by the femur, tibia, femoro-tibial joint, modified metafemoral extensor tendon, extensor ligament, tibial flexor sclerite, and extensor and flexor muscles. The primary role of the metafemoral extensor tendon is seen in the formation of an increased attachment site for the extensor muscles. The rubber-like protein resilin was detected in the extensor ligament, i.e. a short, elastic element connecting the extensor tendon with the tibial base. The calculated specific joint power (max. 0.714 W g−1) of the femoro-tibial joint during the jumping movement and the fast full extension of the hind tibia (1–3 ms) suggest that jumping is performed via a catapult mechanism releasing energy that has beforehand been stored in the extensor ligament during its stretching by the extensor muscles. In addition, the morphology of the femoro-tibial joint suggests that the co-contraction of the flexor and the extensor muscles in the femur of the jumping leg is involved in this process.

Funder

Alexander von Humboldt

European Synchrotron Radiation Facility

European Union

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Reference55 articles.

1. O aparelho saltatório do halticíneo Homophoeta sexnotata Har. (Coleoptera);Barth;Mem. Inst. Oswaldo Cruz,1954

2. The energetics of the jump of the locust Schistocerca gregaria;Bennet-Clark;J. Exp. Biol.,1975

3. Energy storage in jumping animals;Bennet-Clark,1976

4. The jump of the flea: a study of the energetics and a model of the mechanism;Bennet-Clark;J. Exp. Biol.,1967

5. The predatory legs of Philonthus marginatus (Coleoptera, Staphylinidae): functional morphology and tarsal ultrastructure;Betz;Arthropod. Struct. Dev.,2001

Cited by 50 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3