Responses of the Respiratory Pumps to Hypoxia in the Rainbow Trout (Salmo Gairdneri)

Author:

HUGHES G. M.1,SUNDERS R. L.2

Affiliation:

1. Research Unit for Comparative Animal Respiration, Bristol University

2. Research Unit for Comparative Animal Respiration, Bristol University; Present address: Biological Station, Fisheries Research Board of Canada, St Andrews, New Brunswick, Canada.

Abstract

1. Unanaesthetized rainbow trout, when subjected to a lowered Po2 of the inspired water, show an increase in amplitude of pressures recorded from the buccal and opercular cavities. Pressure amplitudes were commonly found to be 0.5 cm of water in resting trout and increased 4- or 5-fold as inspired Po2 was reduced. Differential pressures across the gills also increased with hypoxia. 2. Typically the minute volume in a 400-600 g trout increased from about 0.2 to 0.6 l/kg/min when the inspired Po2 was lowered from 150 to 80 mm Hg, but rose to 1-5l/kg/min at lower Po2. Increased minute volumes are mainly due to increases in stroke volume; respiratory frequency remains fairly constant at Po2 's above about 8o mm Hg. 3. The relation between differential pressure and minute volume is fairly linear over much of the range, but minute volume increases more rapidly than differential pressure. 4. Oxygen consumption of the non-swimming fish increases during hypoxia and is related to the increased ventilation and differential pressure across the gills. 5. Estimates of the oxygen cost of breathing were made from the increased oxygen consumption during hyperventilation. Comparison of these estimates with estimates of the work done, using the pressure and volume measurements, gave figures for the overall efficiency of the pumping mechanism of about 10%.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3