Interdependence of Ca2+ and proton movements in trout hepatocytes

Author:

Ahmed Khaled H.1,Pelster Bernd1

Affiliation:

1. Institut für Zoologie, and Center of Molecular Biosciences,Leopold Franzens Universität Innsbruck, Technikerstraße 25, A-6020 Innsbruck, Austria

Abstract

SUMMARYThis study was undertaken to investigate possible interrelationships between Ca2+ homeostasis and pH regulation in trout hepatocytes. Exposure of cells to Ca2+ mobilizing agents ionomycin (0.5 μmol l–1) and thapsigargin (0.1 μmol l–1)induced an increase in intracellular pH (pHi) that was dependent on Ca2+ influx from the extracellular medium as well as Ca2+ release from intracellular pools. Surprisingly, this increase in pHi and intracellular Ca2+ concentration,[Ca2+]i, was not accompanied by any change in proton secretion. By contrast, removal of extracellular Ca2+(Ca2+e) using EGTA (0.5 mmol l–1)briefly increased proton secretion rate with no apparent effect on pHi, while chelation of Ca2+i using BAPTA-AM (25 μmol l–1) resulted in a drop in pHi and a sustained increase in proton secretion rate. [Ca2+]i therefore affected intracellular proton distribution and/or proton production and also affected the distribution of protons across the cell membrane. Accordingly, changes in pHi were not always compensated for by proton secretion across the cell membrane.Alteration in pHe below and above normal values induced a slow,continuous increase in [Ca2+]i with a tendency to stabilize upon exposure to high pHe values. Rapid pHi increase induced by NH4Cl was accompanied by an elevation in[Ca2+]i from both extracellular and intracellular compartments. Ca2+e appeared to be involved in pHi regulation following NH4Cl-induced alkalinization whereas neither removal of Ca2+e nor chelation of Ca2+i affected pHi recovery following Na-propionate exposure. Similarly, [Ca2+]i increase induced by hypertonicity appeared to be a consequence of the changes in pHi as Na-free medium as well as cariporide diminished the hypertonicity-induced increase in[Ca2+]i. These results imply that a compensatory relationship between changes in pHi and proton secretion across cell plasma membrane is not always present. Consequently, calculating proton extrusion from buffering capacity and rate of pHi change cannot be taken as an absolute alternative for measuring proton secretion rate, at least in response to Ca2+ mobilizing agents.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3