Affiliation:
1. Department of Biology, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106-7080, USA
Abstract
SUMMARY
Animals must negotiate obstacles in their path in order to successfully function within natural environments. These actions require transitions from walking to other behaviors, many of which are more involved than simple reflexes. For these behaviors to be successful, insects must evaluate objects in their path and then use that information to change posture or re-direct leg movements. Some of this control may occur within a region of the brain known as the central complex (CC). We used discrete electrolytic lesions to examine the role of certain sub-regions of the CC in various obstacle negotiation behaviors. We found that cockroaches with lesions to the protocerebral bridge (PB) and ellipsoid body (EB) exhibit abnormalities in turning and dealing with shelf-like objects; whereas, individuals with lesions to the fan-shaped body (FB) and lateral accessory lobe (LAL), exhibit abnormalities of those behaviors as well as climbing over blocks and up walls to a horizontal plane. Abnormalities in block climbing include decreased success rate, changes in climbing strategy, and delayed response to the block. Increases in these abnormal behaviors were significant in individuals with lesions to the FB and LAL. Although turning abnormalities are present in individuals with lesions to the LAL, EB and the lateral region of the FB, there are some differences in how these deficits present. For instance, the turning deficits seen in individuals with lateral FB lesions only occurred when turning in the direction opposite to the side of the brain on which the lesion occurred. By contrast, individuals with lesions to the EB and LAL exhibited turning abnormalities in both directions. Lesions in the medial region of the FB did not result in directional turning deficits, but in abnormalities in block climbing.
Publisher
The Company of Biologists
Subject
Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics
Cited by
46 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献