Echolocation in sympatric Peale's dolphins (Lagenorhynchus australis) and Commerson's dolphins (Cephalorhynchus commersonii) producing narrow-band high-frequency clicks

Author:

Kyhn L. A.12,Jensen F. H.2,Beedholm K.2,Tougaard J.1,Hansen M.2,Madsen P. T.23

Affiliation:

1. National Environmental Research Institute, Department of Arctic Environment, Aarhus University, Frederiksborgvej 399, DK-4000, Roskilde, Denmark

2. Zoophysiology, Department of Biological Sciences, Aarhus University, C. F. Møllers Allé Building 1131, DK-8000 Aarhus, Denmark

3. Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA

Abstract

SUMMARY An increasing number of smaller odontocetes have recently been shown to produce stereotyped narrow-band high-frequency (NBHF) echolocation clicks. Click source parameters of NBHF clicks are very similar, and it is unclear whether the sonars of individual NBHF species are adapted to specific habitats or the presence of other NBHF species. Here, we test whether sympatric NBHF species sharing the same habitat show similar adaptations in their echolocation clicks and whether their clicks display signs of character displacement. Wide-band sound recordings were obtained with a six-element hydrophone array from wild Peale's (Lagenorhynchus australis) and Commerson's (Cephalorhynchus commersonii) dolphins off the Falkland Islands. The centroid frequency was different between Commerson's (133±2 kHz) and Peale's (129±3 kHz) dolphins. The r.m.s. bandwidth was 12±3 kHz for both species. The source level was higher for Peale's dolphin (185±6 dB re 1 μPa p.–p.) than for Commerson's (177±5 dB re 1 μPa p.–p.). The mean directivity indexes were 25 dB for both species. The relatively low source levels in combination with the high directivity index may be an adaptation to reduce clutter when foraging in a coastal environment. We conclude that the small species-specific shifts in distribution of centroid frequencies around 130 kHz may reflect character displacement in otherwise-stereotyped NBHF clicks.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Reference43 articles.

1. Echolocation range of captive and free-ranging baiji (Lipotes vexillifer), finless porpoise (Neophocaena phocaenoides), and bottlenose dolphin (Tursiops truncatus);Akamatsu;J. Acoust. Soc. Am.,1998

2. Possible predator-related adaption of sound production and hearing in the harbour porpoise (Phocoena phocoena);Andersen;Aquat. Mamm.,1976

3. The Sonar of Dolphins

4. Propagation of beluga echolocation signals;Au;J. Acoust. Soc. Am.,1987

5. Echolocation signals and transmission beam pattern of a false killer whale (Pseudorca crassidens);Au;J. Acoust. Soc. Am.,1995

Cited by 89 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3