Cellular and molecular analyses of vascular tube and lumen formation in zebrafish

Author:

Jin Suk-Won1,Beis Dimitris1,Mitchell Tracy1,Chen Jau-Nian2,Stainier Didier Y. R.1

Affiliation:

1. Department of Biochemistry and Biophysics and Cardiovascular Research Institute, Programs in Developmental Biology, Genetics, and Human Genetics,University of California San Francisco, 1550 Fourth street, San Francisco, CA 94143, USA

2. Department of Molecular, Cellular, and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA

Abstract

Tube and lumen formation are essential steps in forming a functional vasculature. Despite their significance, our understanding of these processes remains limited, especially at the cellular and molecular levels. In this study, we analyze mechanisms of angioblast coalescence in the zebrafish embryonic midline and subsequent vascular tube formation. To facilitate these studies, we generated a transgenic line where EGFP expression is controlled by the zebrafish flk1 promoter. We find that angioblasts migrate as individual cells to form a vascular cord at the midline. This transient structure is stabilized by endothelial cell-cell junctions, and subsequently undergoes lumen formation to form a fully patent vessel. Downregulating the VEGF signaling pathway, while affecting the number of angioblasts, does not appear to affect their migratory behavior. Our studies also indicate that the endoderm, a tissue previously implicated in vascular development, provides a substratum for endothelial cell migration and is involved in regulating the timing of this process, but that it is not essential for the direction of migration. In addition, the endothelial cells in endodermless embryos form properly lumenized vessels, contrary to what has been previously reported in Xenopus and avian embryos. These studies provide the tools and a cellular framework for the investigation of mutations affecting vasculogenesis in zebrafish.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3