Cardiac influence of the β3-adrenoceptor in the goldfish (Carassius auratus): a protective role under hypoxia?

Author:

Leo Serena1,Gattuso Alfonsina1,Mazza Rosa1,Filice Mariacristina1,Cerra Maria Carmela1,Imbrogno Sandra1ORCID

Affiliation:

1. Dept of Biology, Ecology and Earth Sciences (BEST), University of Calabria, Arcavacata di Rende (CS), Italy

Abstract

The goldfish (Carassius auratus) exhibits a remarkable capacity to survive and remain active under prolonged and severe hypoxia, representing a well-suited model to study cardiac function when oxygen availability represents a limiting factor. Under hypoxia, the goldfish heart increases its performance, this representing a putative component of hypoxia tolerance; however, underlying mechanisms have not been yet elucidated. We aimed to investigate the role of β3-ARs in the mechanisms which modulate the goldfish heart performance, also in relation to oxygen levels. By western blotting analysis, we found that the goldfish heart expresses β3-ARs, and this expression increases under hypoxia. Effects of β3-ARs stimulation were analysed by using an ex vivo working heart preparation. Under normoxia, the β3-ARs selective agonist BRL37344 (10−12-10−7M) elicited a concentration-dependent increase of contractility abolished by the specific β3-AR antagonist (SR59230A; 10−8M), but not by α/β1/β2-ARs inhibitors (phentolamine, nadolol, and ICI118,551; 10−7M). Under acute hypoxia, BRL37344 did not affect the goldfish heart performance. However, SR59230A, but not phentolamine, nadolol, and ICI118,551, abolished the time-dependent enhancement of contractility which characterizes the hypoxic goldfish heart. Under both normoxia and hypoxia, adenylate cyclase and cAMP were found to be involved in the β3-ARs-dependent downstream transduction pathway. Our findings suggest the presence of functional β3-ARs in the goldfish heart, whose activation modulates the basal performance and contributes to the hypoxia-dependent increase of contractility.

Funder

Ministero dellIstruzione, dellUniversità e della Ricerca

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Reference57 articles.

1. Cholinergic and adrenergic tones in the control of heart rate in teleost. How should they be calculated?;Altimiras;Comp. Biochem. Physiol.,1977

2. Atrial b2-adrenoceptors in the trout;Ask;J. Comp. Physiol,1980

3. Cholinergic and adrenergic influence on the teleost heart in vivo;Axelsson;Exp Biol,1987

4. Cardiac salvage by tweaking with beta-3-adrenergic receptors;Balligand;Cardiovasc. Res.,2016

5. Functional, biochemical and molecular biological evidence for a possible beta(3)-adrenoceptor in human near-term myometrium;Bardou;Br. J. Pharmacol.,2000

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3