Affiliation:
1. Program in Developmental Biology, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, Weill Graduate School of Medical Sciences at Cornell University, 1275 York Avenue, New York, NY 10021, USA
Abstract
One of the first steps in embryonic mesodermal differentiation is allocation of cells to particular tissue fates. In Drosophila, this process of mesodermal subdivision requires regulation of the bHLH transcription factor Twist. During subdivision, Twist expression is modulated into stripes of low and high levels within each mesodermal segment. High Twist levels direct cells to the body wall muscle fate, whereas low levels are permissive for gut muscle and fat body fate. We show that Su(H)-mediated Notch signaling represses Twist expression during subdivision and thus plays a critical role in patterning mesodermal segments. Our work demonstrates that Notch acts as a transcriptional switch on mesodermal target genes, and it suggests that Notch/Su(H) directly regulates twist, as well as indirectly regulating twist by activating proteins that repress Twist. We propose that Notch signaling targets two distinct `Repressors of twist' - the proteins encoded by the Enhancer of split complex[E(spl)C] and the HLH gene extra machrochaetae(emc). Hence, the patterning of Drosophila mesodermal segments relies on Notch signaling changing the activities of a network of bHLH transcriptional regulators, which, in turn, control mesodermal cell fate. Since this same cassette of Notch, Su(H) and bHLH regulators is active during vertebrate mesodermal segmentation and/or subdivision, our work suggests a conserved mechanism for Notch in early mesodermal patterning.
Publisher
The Company of Biologists
Subject
Developmental Biology,Molecular Biology
Reference100 articles.
1. Alifragis, P., Poortinga, G., Parkhurst, S. M. and Delidakis,C. (1997). A network of interacting transcriptional regulators involved in Drosophila neural fate specification revealed by the yeast two-hybrid system. Proc. Natl. Acad. Sci. USA94,13099-13104.
2. Anant, S., Roy, S. and VijayRaghavan, K.(1998). Twist and Notch negatively regulate adult muscle differentiation in Drosophila. Development125,1361-1369.
3. Aronson, B. D., Fisher, A. L., Blechman, K., Caudy, M. and Gergen, J. P. (1997). Groucho-dependent and -independent repression activities of Runt domain proteins. Mol. Cell Biol.17,5581-5587.
4. Artavanis-Tsakonas, S., Rand, M. D. and Lake, R. J.(1999). Notch signaling: cell fate control and signal integration in development. Science284,770-776.
5. Axelrod, J. D., Matsuno, K., Artavanis-Tsakonas, S. and Perrimon, N. (1996). Interaction between Wingless and Notch signaling pathways mediated by dishevelled. Science271,1826-1832.
Cited by
41 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献