Identification of a nutrient sensing transcriptional network in monocytes by using inbred rat models of cafeteria diet

Author:

Martínez-Micaelo N.1,González-Abuín N.1,Terra X.1,Ardévol A.1,Pinent M.1,Petretto E.23,Behmoaras J.4,Blay M.1

Affiliation:

1. Mobiofood Research Group. Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Tarragona, Spain

2. MRC Clinical Sciences Centre, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK

3. Duke-NUS Graduate Medical School Singapore, 8 College Road, 169857 Singapore, Republic of Singapore

4. Centre of Complement and Inflammation Research, Imperial College London, Du Cane Road, London, W12 0NN, UK

Abstract

Obesity has reached pandemic levels worldwide. The current models of diet-induced obesity in rodents use predominantly high-fat based diets that do not take into account the consumption of variety of highly palatable, energy dense foods that are prevalent in Western society. We and others have shown that cafeteria diet (CAF) is a robust and reproducible model of human metabolic syndrome with tissue inflammation in the rat. We have previously shown that inbred rat strains such as Wistar Kyoto (WKY) and Lewis (LEW) show different susceptibilities to CAF diets with distinct metabolic and morphometric profiles. Here we show a difference in plasma MCP-1 levels and investigate the effect of CAF diet on peripheral blood monocyte transcriptome as powerful stress-sensing immune cells in WKY and LEW rats. We found that 75.5% of the differentially expressed transcripts under CAF diet were up-regulated in WKY rats and were functionally related to the activation of the immune response. Using a gene co-expression network constructed from the genes differentially expressed between CAF diet-fed LEW and WKY rats, we identified the Acyl-CoA synthetase short-chain family member 2 (Acss2) as a hub gene for a nutrient sensing cluster of transcripts in monocytes. Acss2 genomic region is significantly enriched for previously established metabolism quantitative trait loci in the rat. Notably, monocyte expression levels of Acss2 significantly correlated with plasma glucose, triglyceride, leptin and NEFA levels as well as morphometric measurements such as body weight and the total fat following CAF in the rat. These results show the importance of the genetic background in nutritional genomics and identify inbred rat strains as potential models for CAF-induced obesity.

Funder

Medical Research Council

Publisher

The Company of Biologists

Subject

General Biochemistry, Genetics and Molecular Biology,Immunology and Microbiology (miscellaneous),Medicine (miscellaneous),Neuroscience (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3