Affiliation:
1. Department of Anatomy and Cellular Biology, Harvard Medical School, Boston, MA 02115.
Abstract
Because bone marrow-derived macrophages differentiate in culture, their lysosomal compartment is largely devoid of the undigested particles that are common in macrophages removed from tissues. The morphology of this nearly vacant lysosomal compartment was observed, after labeling with fluorescent endocytic tracers such as Lucifer Yellow, to be an extensive, tubuloreticular network, which underwent extensive rearrangements in accommodating endocytic loads. It was converted to spherical organelles when the lysosomal compartment was loaded with osmotically active solutes such as sucrose or Acridine Orange. Enzymatic degradation of intravacuolar sucrose by pinocytosed invertase resulted in the shrinkage of vacuoles and the re-formation of the tubular network. After phagocytosis of opsonized erythrocytes or latex beads, tubular lysosomes wrapped around the phagosomes, then merged to form phagolysosomes. The disappearance of tubules was proportional to the total surface area of particles ingested. Degradation of the phagocytosed contents permitted shrinkage of the phagolysosome and concomitant re-formation of the tubuloreticular network. Nondegradable contents such as latex beads prevented re-formation of the tubular network. These rearrangements of the lysosomal compartment indicate that the organelle exhibits considerable plasticity and interconnectedness, and that maturation of lysosomes after endocytosis does not necessarily entail irreversible morphological changes.
Publisher
The Company of Biologists
Cited by
53 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献